Thermal explosion problem with a stochastic boundary: quasi-stationary approximation and direct numerical modelling
https://doi.org/10.21285/1814-3520-2025-4-513-526
EDN: MMLYGK
Abstract
This paper considers a stochastic modification of the Frank-Kamenetskiy problem of exothermic reaction dynamics in a plane-parallel layer with random temperature fluctuations at the outer boundary as a means of modeling the behavior of chemical reactors when operating under uncontrolled environment impacts. Unlike deterministic formulations, such approaches take into account the possibility of a thermal explosion whose probability depends on the noise intensity. Based on random process theory, the conditions for achieving ignition in the quasi-stationary approximation (i.e., when the thermal relaxation rate is much higher than the rate of temperature change) are estimated. The possibility of using such a formulation to obtain an approximate relationship between the parameters of the noise and the dynamic characteristics of ignition (expected thermal explosion time) is demonstrated. The equation of non-stationary heat transfer in the reacting medium is solved numerically for a large number of random temperature trajectories at the boundary of the region of interest using a scheme combining explicit approximation of the nonlinear source with implicit approximation of the temperature field. By comparing the two approaches, the main regularities of non-stationary development of a thermal explosion in a stochastic environment can be approximated with good accuracy. Such a comparison relies on dependencies obtained when solving the quasi-stationary problem, taking into account a small correction for the critical temperature (marking the stability boundary for the stationary problem). Distributions of ignition characteristics (ignition temperature, maximum ambient temperature, and ignition time) and their dependence on input parameters (reactivity and noise intensity) are discussed.
About the Author
I. G. DonskoyRussian Federation
Igor G. Donskoy, Dr. Sci. (Eng.), Leading Researcher of the Thermodynamics Laboratory
130 Lermontov St., Irkutsk 664033
References
1. Mallick S., Gayen D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – a critical review. Journal of Energy Storage. 2023;62:106894. https://doi.org/10.1016/j.est.2023.106894. EDN: VDIKWS.
2. Fu Hui, Wang Junling, Li Lun, Gong Junhui, Wang Xuan. Numerical study of mini-channel liquid cooling for suppressing thermal runaway propagation in a lithium-ion battery pack. Applied Thermal Engineering. 2023;234:121349. https://doi.org/10.1016/j.applthermaleng.2023.121349. EDN: OAMIOZ.
3. Frank-Kamenetsky D.A. Fundamentals of macrokinetics. Diffusion and heat transfer in chemical kinetics. Moscow: Nauka; 2008, 407 р. (In Russ.). EDN: QKBWWN.
4. Baras F., Nicolis G., Mansour M.M., Turner J.W. Stochastic theory of adiabatic explosion. Journal of Statistical Physics. 1983;32:1-23. https://doi.org/10.1007/BF01009416.
5. De Pasquale F., Mecozzi A. Theory of chemical fluctuations in thermal explosions. Physical Review A. 1985;31:2454. https://doi.org/10.1103/PhysRevA.31.2454.
6. Fernandez A. Theory of scaling for fluctuations in thermal explosion conditions. Berichte der Bunsengesellschaft fur physikalische Chemie. 1987;91(2):159-163. https://doi.org/10.1002/bbpc.19870910216.
7. Frankowicz M., Nicolis G. Transient evolution towards a unique stable state: stochastic analysis of explosive behavior in a chemical system. Journal of Statistical Physics. 1983;33:595-609. https://doi.org/10.1007/BF01018836.
8. Frankowicz M., Mansour M.M., Nicolis G. Stochastic analysis of explosive behaviour: a qualitative approach. Physica A: Statistical Mechanics and its Applications. 1984;125(1):237-246. https://doi.org/10.1016/0378-4371(84)90011-6.
9. Van Kampen N.G. Intrinsic fluctuations in explosive reactions. Journal of Statistical Physics. 1987;46(5):933- 948. https://doi.org/10.1007/BF01011150. EDN: ECYFKX.
10. Vlad M.O., Ross J. A stochastic approach to nonequilibrium chain reactions in disordered systems: breakdown of eikonal approximation. International Journal of Thermophysics. 1997;18:957-975. https://doi.org/10.1007/BF02575241.
11. Gorecki J., Popielawski J. On the stochastic theory of adiabatic thermal explosion in small systems — numerical results. Journal of Statistical Physics. 1986;44:941-954. https://doi.org/10.1007/BF01011916.
12. Zheng Qiang, Ross J. Comparison of deterministic and stochastic kinetics for nonlinear systems. Journal of Chemical Physics. 1991;94(5):3644-3648. https://doi.org/10.1063/1.459735.
13. Chou Dong-Pao, Lackner T., Yip Sidney. Fluctuation effects in models of adiabatic explosion. Journal of Statistical Physics. 1992;69:193-215. https://doi.org/10.1007/BF01053790.
14. Nowakowski B., Lemarchand A. Thermal explosion near bifurcation: stochastic features of ignition. Physica A: Statistical Mechanics and its Applications. 2002;311(1-2):80-96. https://doi.org/10.1016/S0378-4371(02)00824-5. EDN: AYCRRJ.
15. Lemarchand A., Nowakowski B. Fluctuation-induced and nonequilibrium-induced bifurcations in a thermochemical system. Molecular Simulation. 2004;30(11-12):773-780. http://dx.doi.org/10.1080/0892702042000270151.
16. Buyevich Yu.A., Fedotov S.P. Formation of heterogeneous reaction modes under the influence of multiplicative noise. Journal of Engineering Physics and Thermophysics. 1987;53(5):802-807. (In Russ.).
17. Wei James. Irreversible thermodynamics in engineering. Industrial and Engineering Chemistry. 1966;50(10):55- 60. https://doi.org/10.1021/ie50682a010.
18. Van der Broeck C., Parrondo J.M.R., Toral R., Kawai R. Nonequilibrium phase transitions induced by multiplicative noise. Physical Review E. 1997;55:4084. https://doi.org/10.1103/PhysRevE.55.4084.
19. Bedeaux D., Pagonabarraga I., De Zarate J.M.O., Sengers J.V., Kjelstrup S. Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion. Physical Chemistry Chemical Physics. 2010;12(39):12780-12793. https://doi.org/10.1039/C0CP00289E. EDN: OBNEQV.
20. Bochkov G.N., Orlov A.L., Kolpashchikov V.L. Fluctuation-dissipation models of mass transfer in systems with chemical reactions. International Communications in Heat and Mass Transfer. 1985;12(1):33-43. https://doi.org/10.1016/0735-1933(85)90005-3.
21. Schmiedl T., Seifert U. Stochastic thermodynamics of chemical reaction networks. Journal of Chemical Physics. 2007;126(4):044101. https://doi.org/10.1063/1.2428297.
22. Ge Hao, Qian Hong. Mathematical formalism of nonequilibrium thermodynamics for nonlinear chemical reaction systems with general rate law. Journal of Statistical Physics. 2017;166(1):190-209. https://doi.org/10.1007/s10955-016-1678-6. EDN: YAXFNJ.
23. Darvey I.G., Staff P.J. Stochastic approach to first-order chemical reaction kinetics. Journal of Chemical Physics. 1966;44(3):990-997. https://doi.org/10.1063/1.1726855.
24. Van Kampen N.G. The equilibrium distribution of a chemical mixture. Physics Letters A. 1976;59(5):333-334. https://doi.org/10.1016/0375-9601(76)90398-4.
25. Gillespie D.T. Stochastic simulation of chemical kinetics. Annual Reviews of Physical Chemistry. 2007;58:35-55. https://doi.org/10.1146/annurev.physchem.58.032806.104637.
26. Higham D.J. Modeling and simulating chemical reactions. SIAM review. 2008;50(2):347-368. https://doi.org/10.1137/060666457.
27. Sandu A. A new look at the chemical master equation. Numerical Algorithms. 2014;65:485-498. https://doi.org/10.1007/s11075-013-9758-z.
28. Schlögl F. Stochastic measures in nonequilibrium thermodynamics. Physics Reports. 1980;62(4):267-380. https://doi.org/10.1016/0370-1573(80)90019-8. EDN: XSQZOA.
29. Öttinger H.C., Peletier M.A., Montefusco A. A framework of nonequilibrium statistical mechanics. I. Role and types of fluctuations. Journal of Non-Equilibrium Thermodynamics. 2020;46(10):1-13. https://doi.org/10.1515/jnet-2020-0068. EDN: UJNFDB.
30. Fernandez A., Rabitz H. The scaling of nonequilibrium fluctuations in gaseous thermal explosions. Berichte der Bunsengesellschaft fur physikalische Chemie. 1988;92(6):754-760. https://doi.org/10.1002/bbpc.198800184.
31. Baer M.R., Gartling D.K., Desjardin P.E. Probabilistic models for reactive behaviour in heterogeneous condensed phase media. Combustion Theory and Modelling. 2012;16(1):75-106. https://doi.org/10.1080/13647830.2011.606916.
32. Fedotov S.P. Stochastic analysis of the thermal ignition of a distributed explosive system. Physics Letters A. 1993;176(3-4):220-224. https://doi.org/10.1016/0375-9601(93)91038-7. EDN: ZYVJQJ.
33. Derevich I.V. Effect of temperature fluctuations of fluid on thermal stability of particles with exothermic chemical reaction. International Journal of Heat and Mass Transfer. 2010;53(25-26):5920-5932. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.031. EDN: MXGOGN.
34. Derevich I., Galdina D. Simulation of thermal explosion of catalytic granule in fluctuating temperature field. Journal of Applied Mathematics and Physics. 2013;1(5):1-7. http://doi.org/10.4236/jamp.2013.15001.
35. Derevich I.V., Fokina A.Y., Ermolaev V.S., Mordkovich V.Z., Solomonik I.G. Heat and mass transfer in Fischer–Tropsch catalytic granule with localized cobalt microparticles. International Journal of Heat and Mass Transfer. 2018;121:1335-1349. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.077. EDN: XXMULJ.
36. Donskoy I.G., Gross E.I. Numerical analysis of thermal ignition statistics in a stochastic reacting medium. Information and mathematical technologies in science and management. 2024;1:66-77. (In Russ.). https://doi.org/10.25729/ESI.2024.33.1.006. EDN: BWDPTW.
37. Derevich I.V., Klochkov A.K. Thermal explosion of single particles in a random temperature field of the medium. High temperature. 2023;61(1):108-117. (In Russ.). https://doi.org/10.31857/S0040364423010039. EDN: PYOCSJ.
38. Donskoy I.G. Steady-state equation of thermal explosion in a distributed activation energy medium: numerical solution and approximations. iPolytech Journal. 2022;26(4):626-639. https://doi.org/10.21285/1814-3520-2022-4-626-639. EDN: BNSPEZ.
39. Kloeden P.E., Platen E. Numerical solution of stochastic differential equations. Berlin: Springer; 1991, vol. 19, Iss. 11, 636 р. https://doi.org/10.1007/978-3-662-12616-5.
Review
For citations:
Donskoy I.G. Thermal explosion problem with a stochastic boundary: quasi-stationary approximation and direct numerical modelling. iPolytech Journal. 2025;29(4):513-526. https://doi.org/10.21285/1814-3520-2025-4-513-526. EDN: MMLYGK
JATS XML






















