Обоснование термофизического воздействия на электродную массу для получения равномерной структуры электродов из игольчатого кокса для руднотермических печей
https://doi.org/10.21285/1814-3520-2023-1-161-173
Аннотация
Цель – разработка технологии получения электродной массы из игольчатого кокса при термофизическом воздействии в контуре экструдера для получения углеграфитовых электродов с заданной структурой и свойствами для руднотермических печей. Для изучения свойств и составов электродных масс и электродов применялись порошковая рентгеновская дифрактометрия, электронная микроскопия, инфракрасная спектроскопия, калориметрия. Для оценки поведения электродов при нагреве в расплаве использовались методы математического и статистического анализа. Обработка данных выполнялась с использованием стандартных программных пакетов MSOffice. Эксперименты с углеграфитовыми материалами проводились в калориметрической лаборатории на базе Научного центра «Проблемы переработки минеральных и техногенных ресурсов» и кафедры металлургии Санкт-Петербургского горного университета с использованием разработанного и запатентованного прототипа экструдера. Определены и научно обоснованы условия и технологические параметры процесса обработки электродных масс (скорости экструзии и потока электродной массы, давление, скорость нагрева в заданном интервале температур для получения устойчивых структурных показателей электрода). Предлагаемый авторами способ термофизической постобработки электродной массы через специальный экструдер в интервале температур 550–620°С и давлении на матрицу 60–80 МПа обеспечивает получение равномерно направленной структуры игольчатого кокса со средней толщиной игл 12–20 нм и длиной игольчатых фаз 5–10 мм, что подтверждается данными рентгеноструктурного анализа. Проведены испытания образцов электродов в расплаве печи в интервале температур 1500–1700°С. Полученные результаты подтверждают устойчивые показатели коэффициента термического расширения (0,3 · 10-6°С-1), удельного электросопротивления (4,5–6,0 мкОм·м), что проявляется в снижении сублимации электрода, низких потерях общей массы на торце электрода, уменьшении степени окисления и количества разрушений его боковой поверхности. При полученной структуре электродов обеспечиваются устойчивые показатели тепло- и электропроводности наряду с высокими значениями теплоемкости, не уступающими показателям электродов и электродных масс импортного производства.
Ключевые слова
Об авторах
В. Ю. БажинРоссия
Бажин Владимир Юрьевич, д.т.н., профессор, заведующий кафедрой металлургии
199106, г. Санкт-Петербург, 21-я линия В.О., 2, Россия
К. А. Крылов
Россия
Крылов Кирилл Андреевич, аспирант
199106, г. Санкт-Петербург, 21-я линия В.О., 2, Россия
Ф. Ю. Шариков
Россия
Шариков Феликс Юрьевич, д.т.н., главный научный сотрудник
199106, г. Санкт-Петербург, 21-я линия В.О., 2, Россия
Список литературы
1. Мартынов С.А., Масько О.Н., Федоров С.Н. Перспективные системы управления энергетическим режимом рудно-термических печей // Цветные металлы. 2022. № 4. С. 87–94. https://doi.org/10.17580/tsm.2022.04.11.
2. Feshchenko R.Yu., Feschenko E.A., Eremin R.N., Erokhina O.O., Dydin V.M. Analysis of the anode paste charge composition // Metallurgist. 2020. Vol. 64. № 7. С. 615–622. https://doi.org/10.1007/s11015-020-01037-1.
3. Yoon Juhee, Moon Seongbak, Ha Son, Lim Hyung-Kyu, Jin Hyoung-Joon, Yun Young Soo. Nanoconfinement effect of nanoporous carbon electrodes for ionic liquid-based aluminum metal anode // Journal of Energy Chemistry. 2022. Vol. 74. P. 121–127. https://doi.org/10.1016/j.jechem.2022.06.048.
4. Zhang Mingqiang, Liao Siyang, Xu Jian, Li Lingfang, Chen Yixuan, Zhu Xinchun, System static voltage stability analysis considering load characteristics of electrolytic aluminum // Energy Reports. 2022. Vol. 8. P. 1112–1121. https://doi.org/10.1016/j.egyr.2022.02.162.
5. Shestakov A.K., Sadykov R.M., Petrov P.A. Multifunctional crust breaker for automatic alumina feeding system of aluminum reduction cell // E3S Web Conferences. 2021. Vol. 266. Р. 09002. https://doi.org/10.1051/e3sconf/202126609002.
6. Литвиненко В.С., Петров Е.И., Василевская Д.В., Яковенко А.В., Наумов И.А., Ратников М.А. Оценка роли государства в управлении минеральными ресурсами // Записки Горного института. 2022. С. 1–17. https://doi.org/10.31897/PMI.2022.100.
7. Опалев А.С., Алексеева С.А. Методическое обоснование выбора оптимальных режимов работы оборудования схемы стадиального вывода концентрата при обогащении железных руд // Записки Горного института. 2022. Т. 256. С. 593–602. https://doi.org/10.31897/PMI.2022.80.
8. Шестаков А.К., Петров П.А., Николаев М.Ю. Автоматическая система обнаружения видимых выбросов в электролизном цехе алюминиевого завода на основе технического зрения и нейронной сети // Металлург. 2022. № 10. С. 105–112. https://doi.org/10.52351/00260827_2022_10_105.
9. Moghadam H.A., Jabbari M., Daneshmand S., Jazi S.R., Khosravi A. Effects of TiO2/SiC/SiO2 coating on graphite electrode consumption in sublimation and oxidation states as determined by EAF simulation and experimental methods // Surface and Coatings Technology. 2021. Vol. 420. Р. 127340. https://doi.org/10.1016/j.surfcoat.2021.127340.
10. Горланов Е.С., Кавалла Р., Поляков А.А. Электролитическое производство алюминия. Обзор. Часть 2. Перспективные направления развития // Цветные металлы. 2020. № 10. С. 42–49. https://doi.org/10.17580/tsm.2020.10.06.
11. Горланов Е.С., Бричкин В.Н., Поляков А.А. Электролитическое производство алюминия. Обзор. Часть 1. Традиционные направления развития // Цветные металлы. 2020. № 10. С. 36–41. https://doi.org/10.17580/tsm.2020.02.04.
12. Литвиненко В.С., Цветков П.С., Двойников М.В., Буслаев Г.В. Барьеры реализации водородных инициатив в контексте устойчивого развития глобальной энергетики // Записки Горного института. 2020. Т. 244. С. 428–438. https://doi.org/10.31897/PMI.2020.4.5.
13. Saevarsdottir G., Magnusson T., Kvande H. Reducing the carbon footprint: primary production of aluminum and silicon with changing energy systems // Journal of Sustainable Metallurgy. 2021. Vol. 7. P. 848–857. https://doi.org/10.1007/s40831-021-00429-0.
14. Габдулхаков Р.Р., Рудко В.А., Ефимов И.И., Спекторук А.А. Оценка качества игольчатого кокса для производства графитированных электродов металлургических печей // Цветные металлы. 2022. № 7. С. 46–56. https://doi.org/10.17580/tsm.2022.07.05.
15. Gabdulkhakov R.R., Rudko V.A., Pyagay I.N. Methods for modifying needle coke raw materials by introducing additives of various origin (review) // Fuel. 2022. Vol. 310. Part A. Р. 122265. https://doi.org/10.1016/j.fuel.2021.122265.
16. Mondal S., Yadav A., Pandey V., Sugumaran V., Bagai R., Kumar R., et al. Dissecting the cohesiveness among aromatics, saturates and structural features of aromatics towards needle coke generation in DCU from clarified oil by analytical techniques // Fuel. 2021. Vol. 304. P. 121459. https://doi.org/10.1016/j.fuel.2021.121459.
17. Ying Liu, Dengpeng Chai, Wei Wang, Dongsheng Li, Junwei Wang, Yudong Liang, et al. Influences of heat treatment on the oxidation and corrosion behavior of Cu–Ni–Fe inert anodes for aluminium electrolysis // Journal of Alloys and Compounds. 2020. Vol. 832. Р. 154848. https://doi.org/10.1016/j.jallcom.2020.154848.
18. Ouzilleau P., Gheribi A.E., Chartrand P. Prediction of CO2/CO formation from the (primary) anode process in aluminium electrolysis using an electrothermodynamic model (for coke crystallites) // Electrochimica Acta. 2018. Vol. 259. P. 916–929. https://doi.org/10.1016/j.electacta.2017.10.175.
19. Sharikov F.Y., Sharikov Y.V. The study of petroleum coke thermal stability and its further modification – experimental approach and modelling // WJERT. 2020. Vol. 6. Iss. 3. P. 113–126. [Электронный ресурс]. URL: https://www.wjert.org/admin/assets/article_issue/38042020/1588149831.pdf (12.03.2022).
20. Фещенко Р.Ю., Ерохина О.О., Еремин Р.Н., Матыльский Б.Э. Анализ методов повышения устойчивости к окислению углеграфитовых изделий, используемых в металлургических и химических агрегатах // iPolytech Journal. 2021. Т. 25. № 3. С. 380–390. https://doi.org/10.21285/1814-3520-2021-3-380-390.
21. Hu Wen-jia, Wang Qi, Zhao Xue-fei, Yang Song-tao, Wu Hu-lin, Zhang Song, et al. Relevance between various phenomena during coking coal carbonization. Part 3: Understanding the properties of the plastic layer during coal carbonization // Fuel. 2021. Vol. 292. P. 120371. https://doi.org/10.1016/j.fuel.2021.120371.
22. Liu Jie, Shi Xue-mei, Cui Lou-wei, Fan Xiao-yong, Shi Jun-he, Hu Xian, et al. Effect of raw material composition on the structure of needle coke // Journal of Fuel Chemistry and Technology. 2021. Vol. 49. Iss. 4. P. 546–553. https://doi.org/10.1016/S1872-5813(21)60026-9.
23. Li Mingfeng, Wang Yanjun, Yang Shanglu, Tao Wu, Zhang Guotao. Improving mechanical properties and electrode life for joining aluminum alloys with innovatively designated Newton ring electrode // Journal of Manufacturing Processes. 2021. Vol. 64. P. 948–959. https://doi.org/10.1016/j.jmapro.2021.02.001.
24. Ismagilov Z.R., Sozinov S.A., Popova A.N., Zaporin V.P. Structural analysis of needle coke // Coke and Chemistry. 2019. Vol. 62. Iss. 4. P. 135–142. https://doi.org/10.3103/S1068364X19040021.
25. Cheng Junxia, Lu Zhenjie, Zhao Xuefei, Chen Xingxing, Liu Yuhong. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor // Journal of Power Sources. 2021. Vol. 494. Р. 229770. https://doi.org/10.1016/j.jpowsour.2021.229770.
26. Gutiérrez E., Salazar E., Salinas A., Deaquino R., Ponce A., Yacaman M., et al. Texture, microstructure and mechanical properties of AA7075-graphite composites produced through mechanical alloying and hot-extrusion // Materials Chemistry and Physics. 2023. Vol. 296. P. 127323. https://doi.org/10.1016/j.matchemphys.2023.127323.
27. Пат. № 2784238, Российская Федерация, С10В 55/00. Установка для получения игольчатого кокса / В.Ю. Бажин, И.И. Белоглазов, Е.С. Ильин, В.Б. Кусков, К.А. Крылов; заявитель и патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет». Заявл. 31.03.2022; опубл. 23.11.2022. Бюл. № 33.
28. Yumeng Yang, Jiangzhong Liu, Mingyi Chen. Superfine comminution characteristics of low-rank coal pyrolysis semi-cokes and evolution of fragmentation fractal dimension // Fuel. 2022. Vol. 325. P. 124991. https://doi.org/10.1016/j.fuel.2022.124991.
29. Bangaru S.S., Wang Chao, Zhou Xu, Hassan Marwa. Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network // Automation in Construction. 2022. Vol. 144. P. 104602. https://doi.org/10.1016/j.autcon.2022.104602.
30. Nohl J.F., Farr N.T.H., Sun Yige, Hughes G.M., Cussen S.A., Rodenburg C. Low-voltage SEM of air-sensitive powders: from sample preparation to micro/nano analysis with secondary electron hyperspectral imaging // Micron. 2022. Vol. 156. P. 103234. https://doi.org/10.1016/j.micron.2022.103234.
31. Asadi P., Beckingham L.E. Intelligent framework for mineral segmentation and fluid-accessible surface area analysis in scanning electron microscopy // Applied Geochemistry. 2022. Vol. 143. P. 105387. https://doi.org/10.1016/j.apgeochem.2022.105387.
32. Sharikov Yu.V., Sharikov, F.Yu., Krylov, K.A. Mathematical model of optimum control for petroleum coke production in a rotary tube kiln // Theoretical Foundations of Chemical Engineering. 2021. Vol. 55. P. 711–719. https://doi.org/10.1134/S0040579521030192.
33. Sharikov F.Yu., Sharikov Yu.V., Krylov K.A. Selection of key parameters for green coke calcination in a tubular rotary kiln to produce anode petcoke // ARPN Journal of Engineering and Applied Sciences. 2020. Vol. 15. No. 23. P. 2904–2912.
34. Xu Xian, Cui Louwei, Shi Junhe, Liu Jiaojiao, Zhu Yonghong, Tian Yafei, et al. Effects of co-carbonization of medium and low temperature refined pitch and high temperature refined pitch on the structure and properties of needle coke // Journal of Analytical and Applied Pyrolysis. 2023. Vol. 169. P. 105783. https://doi.org/10.1016/j.jaap.2022.105783.
Рецензия
Для цитирования:
Бажин В.Ю., Крылов К.А., Шариков Ф.Ю. Обоснование термофизического воздействия на электродную массу для получения равномерной структуры электродов из игольчатого кокса для руднотермических печей. iPolytech Journal. 2023;27(1):161-173. https://doi.org/10.21285/1814-3520-2023-1-161-173
For citation:
Bazhin V.Yu., Krylov K.A., Sharikov F.Yu. Substantiation of thermophysical action over electrode paste to achieve an even structure of electrodes of needle coke for thermal furnaces. iPolytech Journal. 2023;27(1):161-173. (In Russ.) https://doi.org/10.21285/1814-3520-2023-1-161-173