Preview

iPolytech Journal

Advanced search

On the question of using solid electrodes in the electrolysis of cryolite-alumina melts. Part 1.

https://doi.org/10.21285/1814-3520-2020-6-1324-1336

Abstract

This article is aimed at identifying issues associated with the use of solid cathodes in the electrolysis of cryolitealumina melts in order to determine conditions for their practical application. The contemporary technology of using solid anodes and cathodes is reviewed from its inception to the present time. The problems of stable electrolysis are discussed, such as effects of the electrode surface on the technological process. It is shown that all attempts undertaken over the recent 100 years to use solid electrodes, both reactive and inert, have been challenged with the emergence of electrolysis instability, formation of precipitates of varying intensity on the electrodes and impossibility of maintaining a prolonged process at current densities of above 0.4–0.5 A/cm2. Information is provided on the attempts to use purified electrolyte components with different ratios, metal-like and ceramic electrodes with a high purity and a smooth surface in order to approach real industrial conditions. However, to the best of our current knowledge, these experiments have not found commercial application. The authors believe that the most probable reason for the decreased current efficiency and passivation of solid electrodes consists in the chemical inhomogeneity and micro-defects of the bulk and surface structure of polycrystalline cathodes and anodes. It was the physical inhomogeneity of carbon electrodes that directed the development of the nascent electrolytic production of aluminium towards the use of electrolytic cells with a horizontal arrangement of electrodes and liquid aluminium as a cathode. This reason is assumed to limit the progress of electrolytic aluminium production based on the use of inert anodes and wettable cathodes in the designs of new generation electrolytic cells implying vertically arranged drained cathodes. The theoretical and experimental examination of this assumption will be presented in the following parts of the article.

About the Author

E. S. Gorlanov
«EXPERT-AL» LLC
Russian Federation

Evgeniy S. Gorlanov, Doct. Sci. (Eng.)

86/A, Sredniy pr., V.O. Saint-Petersburg 199106



References

1. Solheim A. Inert anodes – the blind alley to environmental friendliness? // Light metals. 2018. P. 1253–1260. http://doi.org/10.1007/978-3-319-72284-9_164

2. Горланов Е.С. Электролиз криолитоглиноземных расплавов на твердых катодах // XI Междунар. конгр. «Цветные металлы и минералы» и ХХХVII Междунар. конф. «ИКСОБА»: сб. докл. (г. Красноярск, 16–20 сентября 2019). Красноярск, 2019. С. 275–288.

3. Горланов Е.С. Особенности применения твердых электродов для электролиза криолитоглиноземных расплавов // Вестник Иркутского государственного технического университета. 2019. Т. 23. № 2. С. 356–366. http://doi.org/10.21285/1814-3520-2019-2-356-366

4. Patente no. 175711, France. Procédé électrolytique pour la préparation de l’aluminium / P. L-T. Héroult. Déposé 23.04.1886; publ. 01.09.1886.

5. Patent no. 400766, United States of America. Process of Reducing Aluminum by Electrolysis / Ch. M. Hall; no. 207601. Filed 9.07.1886; publ. 2.04.1889.

6. Patent no. 400664, United States of America. Process of reducing aluminium from its fluoride salts by electrolysis / Ch. M. Hall; no. 226206. Filed 2.02.1887; publ. 2.04.1889.

7. Patent no. 400665, United States of America. Manufacture of aluminium / Ch. M. Hall; no. 282954. Filed 17.08.1888; publ. April 2, 1889. 3 p.

8. Patent no. 400666, United States of America. Process of electrolyzing crude salts of aluminium / Ch. M. Hall; no. 282955. Filed 17.08.1888; publ. 2.04.1889.

9. Patent no. 400667, United States of America. Process of electrolyzing crude salts of aluminium / Ch. M. Hall; no. 286034. Filed 21.09.1888; publ. 2.04.1889.

10. Minet A. The Production of Aluminium and its Industrial Uses. First edition. London: Chapman & Hall, 1905. 266 p.

11. Ibl N. Current Distribution / in Comprehensive Treatise of Electrochemistry. Vol. 6. Electrodics: Transport. Eds. by E. Yeager J.O'M. Bockris, B.E. Conway, S. Sarangapani. New York: Plenum Press, 1983. Р. 239–315. [Электронный ресурс]. URL: https://books.google.ru/books/about/Electrodics_transport.html?id=aN-FAAAAIAAJ&redir_esc=y (09.08.2020).

12. Newman J., Thomas-Alyea K.E. Electrochemical systems. 3rd ed. John Newman and New Jersey. Hoboken: John Wiley & Sons, 2004. 647 p.

13. Гамбург Ю.Д., Зангари Дж. Теория и практика электроосаждения металлов / пер. с англ. Ю.Д. Гамбург. М.: БИНОМ. Лаборатория знаний, 2015. 441 с.

14. Барабошкин Н.А. Электрокристаллизация металлов из расплавленных электролитов. М.: Наука, 1976. 279 с.

15. Richards J.W. Aluminium: its history, occurrence, properties, metallurgy and applications, including its alloys. Third edition. London, 1896. 666 p.

16. Laparra M. The aluminium false twins. Сharles martin hall and paul héroult’s first experiments and technological options // Journal for the History of Aluminium. 2012. No. 48. P. 85–105.

17. Федотьев П.П. Современное состояние химической и электрохимической промышленности на континенте Европы: монография. СПб.: Тип.-литогр. Шредера, 1907. 229 с.

18. Patent no. 1070454, United States of America. Electrolytic cell / T. Griswold; Dow Chemical Company; no. 633320. Filed 15.06.1911; publ. 19.08.1913.

19. Patent no. 2480474, United States of America. Int. CI. 204-67. Method of producing aluminum / Arthur F. Johnson; Reynolds Metals Company; no. 634903. Filed 14.12.1945; publ. 30.08.1949.

20. Patent 802905, Great Britain. Int. Cl. B23n. C22d. Improvements in or relating to Electrolytic Cells for the Production of Aluminium / C.E. Ransley; no. 1155/54. Filed 14.01.1955; publ. 15.10.1958.

21. Patent no. 3028324, United States of America. Int. Cl. 204-67. Producing or Refining Aluminum / C.E. Ransley; British Aluminium Company; no. 660994. Filed 23.05.1957; publ. 23.04.1962.

22. Ransley C.E. The application of the refractory carbides and borides to aluminum reduction cells // Extractive Metallurgy of Aluminum. Vol. 2. Aluminium. New York: Interscience, 1962. P. 487–506.

23. Patent no. 2915442, United States of America. Cl. 204-67. Production of Aluminum / R.A. Lewis; Kaiser Aluminum & Chemical Corporation; no. 549347. Filed 28.11.1955; publ. 1.12.1959.

24. Patent no. 3093570, United States of America. Int. Cl. 204-243. Refractory Lining for Alumina Reduction Cells / J.L. Dewey; Reynolds Metals Company; no. 847594. Filed 20.10.1959; publ. 11.06.1963.

25. Patent no. 4376029, United States of America. Int. Cl. C25B 11/04, C25C 3/12. Titanium diboride-graphite composites / L.A. Joo, K.W. Tucker, F.E. McCown; Great Lakes Carbon Corporation; No. 186181. Filed 11.09.1980; publ. 8.03.1983.

26. Hudson T.J. Cathode technology for aluminum electrolysis cells // Light Metals. 1987. P. 321–325.

27. Gessing A.J., Wheeler D.J. Screening and avaluation methods of cathode materials for use in aluminum reduction cells in presence of molten aluminum and cryolite up to 1000°C // Light Metals. 1987. P. 327–334.

28. McIntyre J., Mitchell D.N., Simpson S. Performance testing of cathodic materials and designs in a 16 kA cell and a test bed // Light Metals. 1987. P. 335–344.

29. Tucker K.W., Gee J.T., Shaner J.R., Joo L.A., Taberoux A.T., Stewart D.V., et al. Stable TiB2 – graphite cathode for aluminium production // Light Metals. 1987. P. 345–349.

30. Van Leeuwen T.M. An aluminum revolution // Equity Research, Credit Suisse First Boston. Boston: 2000. 110 p.

31. Brown C.W. The wettability of TiB2-based cathodes in low-temperature slurry-electrolyte reduction cells // JOM. 1998. Vol. 50. Issue 5. P. 38–40.

32. Christini R.A., Dawless R.K., Ray S.P., Weirauch D.A. Phase III advanced anodes and cathodes utilized in energy efficient aluminum production cells // Final Technical Progress Report for the Period 1998 August through 2001 July (Revised 2002 May 07). 92 p. [Электронный ре- сурс]. URL: https://www.osti.gov/servlets/purl/794978 (09.08.2020).

33. Bradford D.R. Inert Anode Metal Life in Low Temperature Reduction Process. Final Technical Report for September 17, 1998 through March 31, 2005. 101 p / National Technical Reports Library [Электронный ресурс]. URL: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/DE2006841153.xhtml (09.08.2020).

34. Wang Jia-wei, Lai Yan-qing, Tian Zhong-liang, Liu Yexiang. Effect of electrolysis superheat degree on anticorrosion performance of 5Cu / (10NiO - NiFe2О4) cermet inert anode // Journal of Central South University of Technology. 2007. P. 768. http://doi.org/10.1007/s11771-007-0146-5

35. Zaikov Yu., Khramov A., Kovrov V., Kryukovsky V., Apisarov A., Chemesov O., et al. Electrolysis of aluminum in the low melting electrolytes based on potassium cryolite // Light metals. 2008. P. 505.

36. Hryn J.N., Tkacheva O.Y., Spangenberger J.S. Ultra-High-efficiency aluminum production cell // Report of Energy Systems Division, Argonne National Laboratory. Award Number: DE-AC02-06CH11357. April 2014. P. 86. [Электронный ресурс]. URL: https://www.energy.gov/eere/amo/downloads/ultrahighefficiency-aluminum-production-cells (17.08.2020).

37. Bao Shengzhong, Chai Dengpeng, Shi Zhirong, Wang Junwei, Liang Guisheng, Zhang Guisheng. Effects of current density on current efficiency in low temperature electrolysis with vertical electrode structure // Light Metals. 2018. P. 611–619. http://doi.org/10.1007/978-3-319-72284-9_79

38. Wang Zhaohui, Friis J., Ratvik A.P. Transport of sodium in TiB2 materials investigated by a laboratory test and DFT calculations // Light Metals. 2018. P. 1321–1328. http://doi.org/10.1007/978-3-319-72284-9_173


Review

For citations:


Gorlanov E.S. On the question of using solid electrodes in the electrolysis of cryolite-alumina melts. Part 1. Proceedings of Irkutsk State Technical University. 2020;24(6):1324-1336. https://doi.org/10.21285/1814-3520-2020-6-1324-1336

Views: 344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)