Preview

iPolytech Journal

Расширенный поиск

Анализ прогрессивных технологий механообработки транспедикулярных винтов

https://doi.org/10.21285/1814-3520-2020-6-1190-1198

Аннотация

Цель – повышение эффективности процессов механической обработки транспедикулярных винтов из титановых сплавов на высокопроизводительном оборудовании на основе выбора прогрессивных технологич еских подходов, анализ современной технологии изготовления имплантов на станках с программным управлением типа токарный полуавтомат продольного точения. В качестве критериев оценки эффективности использовались производительность процесса, определяемая машинным временем, и качество обработки имплантов (шероховатость поверхности, геометрическая точность, механические свойства). Установлено, что токарные полуавтоматы продольного точения, оснащенные цанговой системой подачи прутка и приводными головками для вихревого нарезания резьбы, позволяют обрабатывать импланты типа транспедикулярного винта за один установ с максимальной эффективностью. Показано, что технология механообработки транспедикулярных винтов в значительной мере определяется особенностями их конструкции. Тип и форма резьбы оказывают наибольшее влияние на применяемый режущий инструмент и режимы резания. Анализ поломок винтов выявил, что основными причин ами являются конструктивные дефекты и низкое качество обработки резьбовой части. Установлено, что применение метода вихревого нарезания резьбы позволяет получить резьбу за один проход и значительно повысить производительность обработки по сравнению с традиционной технологией без потери качества. Дополнительными преимуществами данного метода являются сокращение количества используемых инструментов и дополнительных финишных операций для удаления заусенцев. На основании проведенного анализа рекомендовано при изготовлении транспедикулярных винтов из титановых сплавов применять прогрессивные режущие инструменты – фрезы для вихревого резьбонарезания, обеспечивающие увеличение производительности процесса обработки в 4 раза без потери качества обрабатываемого изделия; снизить шероховатость поверхности до 2 раз, при этом уменьшится температура в зоне резания, что будет положительно влиять на ресурс обработанных изделий. Для эффективного применения указанных фрез необходимо оснащать используемые в технологическом процессе станки специальными приводными головками.

Об авторах

А. В. Савилов
Иркутский национальный исследовательский технический университет
Россия

Савилов Андрей Владиславович, кандидат технических наук, доцент, доцент кафедры технологии и оборудования машиностроительных производств

664074, г. Иркутск, ул. Лермонтова, 83



А. С. Пятых
Иркутский национальный исследовательский технический университет
Россия

Пятых Алексей Сергеевич, кандидат технических наук, доцент кафедры технологии и оборудования
машиностроительных производств

664074, г. Иркутск, ул. Лермонтова, 83



С. А. Тимофеев
Иркутский национальный исследовательский технический университет
Россия

Тимофеев Сергей Анатольевич, младший научный сотрудник кафедры технологии и оборудования машиностроительных производств

664074, г. Иркутск, ул. Лермонтова, 83



Список литературы

1. Savilov A.V., Svinin V.M., Timofeev S.A. Studies on titanium alloy turning rate improvement // Lecture Notes in Mechanical Engineering: Proceedings of the 5th International Conference on Industrial Engineering. 2019. Р. 1027–1033. https://doi.org/10.1007/978-3-030-22063-1_109

2. Lam Tu-Ngoc, Trinh Minh-Giam, Huang Chih-Chieh, Kung Pei-Ching, Huang Wei-Chin, Chang Wei, et al. Investigation of bone growth in additive-manufactured pedicle screw implant by using Ti-6Al-4V and bioactive glass powder composite // International Journal of Molecular Sciences. 2020. Vol. 21. Issue 20. https://doi.org/10.3390/ijms21207438

3. Shi Liang-Yu, Wang An, Zang Fa-Zhi, Wang Jian-Xi, Pan Xian-Wei, Chen Hua-Jiang, et al. Tantalum-coated pedicle screws enhance implant integration // Colloids and Surfaces B: Biointerfaces. 2017. Vol. 160. Р. 22–32. https://doi.org/10.1016/j.colsurfb.2017.08.059

4. Becker Y.N., Motsch N., Hausmann J., Breuer U.P. Hybrid composite pedicle screw - finite element modelling with parametric optimization // Informatics in Medicine Unlocked. 2020. Vol. 18. https://doi.org/10.1016/j.imu.2020.100290

5. Kang Kyoung-Tak, Koh Yong-Gon, Son Juhyun, Yeom Jin S., Park Joon-Hee, Kim Ho-Joong. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiberreinforced polyetheretherketone, and traditional titanium as rod materials // Composites Part B: Engineering. 2017. Vol. 130. Р. 248–256. https://doi.org/10.1016/j.compositesb.2017.07.052

6. Rosa G., Clienti C., Mineo R., Audenino A. Experimental analysis of pedicle screws // Procedia Structural Integrity. 2016. Vol. 2. Р. 1244–1251. https://doi.org/10.1016/j.prostr.2016.06.159

7. Le Cann S., Tudisco E., Turunen M.J., Patera A., Mokso R., Tägil M., et al. Investigating the mechanical characteristics of bone-metal implant interface using in situ synchrotron tomographic imaging // Frontiers in Bioengineering and Biotechnology. 2019. https://doi.org/10.3389/fbioe.2018.00208

8. Abshire B.B., McLain R.F., Valdevit A., Kambic H.E. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out // Spine Journal. 2001. Vol. 1. Issue 6. Р. 408–414. https://doi.org/10.1016/S1529-9430(01)00119-X

9. Shea T.M., Laun J., Gonzalez-Blohm S.A., Doulgeris J.J., Lee William E., Aghayev K., et al. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status // BioMed Research International. 2014. https://doi.org/10.1155/2014/748393

10. Kubiak A.J., Lindqvist-Jones K., Dearn K.D., Dunkan E.T. Shepherd. Comparison of the mechanical properties of two designs of polyaxial pedicle screw // Engineering Failure Analysis. 2019. Vol. 95. Р. 96–106. https://doi.org/10.1016/j.engfailanal.2018.08.023

11. Kemény A., Hajdu I., Károly D., Pammer D. Osseointegration specified grit blasting parameters // Materials Today: Proceedings. 2018. Vol. 5. Issue 13. Part 2. P. 26622–26627. https://doi.org/10.1016/j.matpr.2018.08.126

12. Wu D., Spanou A., Diez-Escudero A., Persson C. 3Dprinted PLA/HA composite structures as synthetic trabecular bone: a feasibility study using fused deposition modeling // Journal of the Mechanical Behavior of Biomedical Materials. 2020. Vol. 103. https://doi.org/10.1016/j.jmbbm.2019.103608

13. Balaji J.H., Krishnaraj V., Yogesvaraj S. Investigation on high speed turning of titanium alloys // Procedia Engineering. 2013. Vol. 64. Р. 926–935. https://doi.org/10.1016/j.proeng.2013.09.169

14. Krainev D.V., Polyanchikova M.Yu., Bondarev A.A. Influence of the surface layer characteristics on the regularities of the cutting process // International Conference on Modern Trends in Manufacturing Technologies and Equipment: Web of Conferences. 2017. 129. No. 3. https://doi.org/10.1051/matecconf/201712901045

15. Altintas Y., Chan P.K. In-process detection and suppression of chatter in milling // International Journal of Machine Tools and Manufacture. 1992. Vol. 32. Issue 3. Р. 329–347. https://doi.org/10.1016/0890-6955(92)90006-3

16. Svinin V.M., Astakhov D.M. Control of self-excited vibrations in face milling with two-rim mill // Control of selfexcited vibrations in face milling with two-rim mill: Materials Science and Engineering: IOP Conference Series. 2019. Vol. 632. https://doi.org/10.1088/1757-899X/632/1/012111

17. Roukema J.С., Altintas Yu. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation // International Journal of Machine Tools and Manufacture. 2007. Vol. 47. Issue 9. Р. 1455–1473. https://doi.org/10.1016/j.ijmachtools.2006.10.005

18. Roukema J.С., Altintas Yu. Generalized modeling of drilling vibrations. Part II: Time domain model of drilling kinematics, dynamics and hole formation // International Journal of Machine Tools and Manufacture. 2007. Vol. 47. Issue 9. Р. 1455–1485. https://doi.org/10.1016/j.ijmachtools.2006.10.006

19. Serebrennikova A.G., Nikolaeva E.P., Savilov A.V., Timofeev S.A., Pyatykh A.S. Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning // Journal of Physics: Conference Series. 2018. Vol. 944. https://doi.org/10.1088/1742-6596/944/1/012104

20. Budak E., Kops L. Improving Productivity and Part Quality in Milling of Titanium Based Impellers by Chatter Suppression and Force Control // CIRP Annals. 2000. Vol. 49. Issue 1. P. 31–36. https://doi.org/10.1016/S0007-8506(07)62890-X


Рецензия

Для цитирования:


Савилов А.В., Пятых А.С., Тимофеев С.А. Анализ прогрессивных технологий механообработки транспедикулярных винтов. Вестник Иркутского государственного технического университета. 2020;24(6):1190-1198. https://doi.org/10.21285/1814-3520-2020-6-1190-1198

For citation:


Savilov A.V., Pyatykh A.S., Timofeev S.A. Analysis of advanced transpedicular screw machining technologies. Proceedings of Irkutsk State Technical University. 2020;24(6):1190-1198. (In Russ.) https://doi.org/10.21285/1814-3520-2020-6-1190-1198

Просмотров: 474


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)