Preview

iPolytech Journal

Advanced search

GAS DYNAMICS MODEL OF CRITICAL AND SUBCRITICAL LIQUID-VAPOR MIXTURE FLOW THROUGH A BED OF SPHERICAL PARTICLES

https://doi.org/10.21285/1814-3520-2018-9-162-172

Abstract

The PURPOSE of the paper is to give a computational and experimental rationale for the theoretical model of two-phase liquid-vapor flow through a fixed layer of solid particles, compare the calculation results with the experimental data on subcritical and critical liquid-vapor flow through various beds of spherical particles and estimate the predictive capability of the model. METHODS. Theoretical description relies on the equations of gas dynamics of a granular layer and the homogeneous model of a one-component two-phase flow taking into account the difference in velocities of liquid and vapor phases, which allows to obtain an analytical solution for the mass velocity of the mixture. When obtaining the dependences for the phase slip ratio and the polytropic coefficient for isenthalpic expansion of the mixture multidimensional nonlinear regression methods are used. Methods of the experimental study of liquid-vapor flow in a random packed bed of spherical particles are used to obtain the experimental data on the mass velocity value. RESULTS AND THEIR DISCUSSION. The analytic expression for the mass velocity is obtained in the framework of the presented gas dynamics model of the liquid-vapor flow through the fixed layer of solid particles. The available experimental data on the mass velocity of critical and subcritical flow are generalized using the theoretical model. It is shown that the transition to the relative magnitude of the mass velocity allows to construct a universal flow characteristic for an arbitrary granular layer. CONCLUSIONS. The developed mathematical model can be used to generalize the experimental data and predict the dependence of the mass velocity of a two-phase liquid-vapor flow in a layer of solid particles under subcritical and critical flow regimes.

About the Authors

E. A. Tairov
Melentiev Energy System Research Institute SB RAS
Russian Federation


E. V. Tairova
Irkutsk State Transport University
Russian Federation


P. V. Khan
Melentiev Energy System Research Institute SB RAS
Russian Federation


References

1. Stubos A., Buchlin J.-M. Analysis and numerical simulation of the thermohydraulic behaviour of a heat dissipating debris bed during power transients // Int. J. Heat Mass Transfer. 1993. Vol. 36. No. 5. P. 1391-1401.

2. Авдеев А.А., Созиев Р.И. Гидродинамическое сопротивление потока пароводяной смеси в шаровой засыпке // Теплофизика высоких температур. 2008. Т. 46. № 2. С. 251-256. DOI: 10.1134/s10740-008-2011-0

3. Li L., Zou X., Lou J., Li H., Lei X. Pressure drops of single/two-phase flows through porous beds with multi-sizes spheres and sands particles // Annals of Nuclear Energy. 2015. Vol. 85. P. 290-295.

4. Tung V., Dhir V. A hydrodynamic model for two-phase flow through porous media // Int. J. Multiphase Flow. 1988. Vol. 14. No. 1. P. 47-65.

5. Li L., Wang H., Zou X., Kong L. Flow resistances characteristics in a particulate bed with the configurations of uniform mixture and stratification // Annals of Nuclear Energy. 2018. Vol. 112. P. 62-70.

6. Сорокин В.В. Расчет двухфазного адиабатического течения в шаровой засыпке // Теплофизика высоких температур. 2007. Т. 45. № 2. С. 261-266. DOI: 10.1134/S0018151X07020137

7. Taherzadeh M., Saidi M.S. Modeling of two-phase flow in porous media with heat generation // International Journal of Multiphase Flow. 2015. Vol. 69. P. 115-127.

8. Делайе Дж., Гио М., Ритмюллер М. Теплообмен и гидродинамика двухфазных потоков в атомной и тепловой энергетике / пер. с англ. М.: Энергоатомиздат, 1984. 422 с.

9. Kim S.-M., Mudawar I. Review of two-phase critical flow models and investigation of the relationship between choking, premature CHF, and CHF in micro-channel heat sinks // Int. J. of Heat and Mass Trans. 2015. Vol. 87. P. 497-511.

10. Eliasi E., Lellouche G.S. Two-phase critical flow // Int. J. Multiphase Flow. 1994. Vol. 20. P. 91-168.

11. Фисенко В.В. Критические двухфазные потоки. М.: Атомиздат, 1978. 160 с.

12. Гольдштик М.А. Процессы переноса в зернистом слое: монография. Новосибирск: Изд-во Института теплофизики СО РАН, 2005. 358 с.

13. Pokusaev B.G., Tairov E.A., Khan P.V., Khramtsov D.P. Numerical and Analytical Approaches to Modeling Critical Two-Phase Flow with Granular Layer // J. of Engineering Thermophysics. 2018. Vol. 27. P. 20-29.

14. Таиров Э.А., Покусаев Б.Г., Быкова С.М. Критическое истечение парожидкостного потока через слой шаровых частиц // Теплофизика высоких температур. 2016. Т. 54. № 2. С. 277-286. DOI: 10.1134/S0018151X16020218

15. Быкова С.М., Таиров Э.А. Влияние параметров засыпки на истечение пароводяной смеси // Вестник ИрГТУ. 2014. № 9 (92). С. 197-201.

16. Дейч М.Е., Данилин В.С., Циклаури Г.В., Шанин В.К. Исследование течения влажного пара в осесимметричных соплах Лаваля в широком диапазоне степеней влажности // Теплофизика высоких температур. 1969. Т. 7. Вып. 2. С. 327-333.

17. Starkman E.S., Schrock V.E., Neusen K.F., Maneely D.J. Expansion of a very low quality two-phase fluid through a convergent-divergent nozzle // J. Basic Eng. 1964. Vol. 86. P. 247-254.

18. Справочник по теплогидравлическим расчетам в ядерной энергетике / под общ. ред. П.Л. Кириллова: в 3 т. Т. 1. Теплогидравлические процессы в ЯЭУ / П.Л. Кириллов, В.П. Бобков, А.В. Жуков, Ю.С. Юрьев. М.: ИздАТ, 2010. 771 c.

19. Бeлоконь Н.И. Термодинамика. М., Л.: Государственное энергетическое издательство, 1954. 427 c.


Review

For citations:


Tairov E.A., Tairova E.V., Khan P.V. GAS DYNAMICS MODEL OF CRITICAL AND SUBCRITICAL LIQUID-VAPOR MIXTURE FLOW THROUGH A BED OF SPHERICAL PARTICLES. Proceedings of Irkutsk State Technical University. 2018;22(9):162-172. (In Russ.) https://doi.org/10.21285/1814-3520-2018-9-162-172

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)