Preview

iPolytech Journal

Advanced search

METHOD OF TWO-DIMENSIONAL BINARY RANDOM PROCESS GENERATION

https://doi.org/10.21285/1814-3520-2018-1-89-99

Abstract

The PURPOSE of the study is search for new and modernization of known generation methods of random processes with specified static (probability distribution law) and dynamic (correlation function) probabilistic properties. METHODS. The main research methods used in the study are the probability theory, mathematical statistics and numerical methods. RESULTS. The object of the study is a permutational technology of random process generation with a simultaneously specified probability distribution law and an autocorrelation function. This technology is simple in software implementation, has high response speed and allows to introduce the required probability properties with the accuracy of their reflection, sufficient for engineering applications (e.g. in simulation modeling). The Bernoulli (binary) law is taken as a law of probability distribution of the generated process. The conducted analysis of the probabilistic properties of the behavior of the permutation procedure components has resulted in the identification of new, previously unknown functional capabilities of this method of random process generation. Probabilistic properties (probability distribution laws and autocorrelation functions of the candidate vector components) are systematized depending on a mathematically justified permutation variant. The study is given to two variants of the permutational method that allows to generate a periodically correlated binary process. It is proved that these variants simultaneously provide the possibility to generate a two-dimensional binary random process. CONCLUSION. Conducted theoretical studies allowed to expand the functionalities of the permutational procedure of binary random process generation due to the possibility to generate a two-dimensional random binary process.

About the Author

A. V. Petrov
Irkutsk National Research Technical University
Russian Federation


References

1. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся вузов. М.: Наука, 1981. 721 с.

2. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1974. 832 с.

3. Феллер В. Введение в теорию вероятностей и ее приложения; в 2 т.; пер. с англ. М.: Наука, 1984. 1280 с.

4. Гнеденко Б.В. Курс теории вероятностей. 8-е изд., испр. и доп. М.: Едиториал УРСС, 2005. 448 с.

5. Петров А.В. Моделирование процессов и систем. СПб.: Лань, 2015. 288 с.

6. Петров А.В. Основы теории полиномиальных стохастических взаимосвязей. Иркутск: Изд-во ИРНИТУ, 2016. 170 с.

7. Петров А.В. О подходах к вероятностному анализу перестановочных процедур генерирования случайных процессов // Вестник ИрГТУ. 2016. № 2 (109). С. 29-38.

8. Петров А.В. Моментные функции бинарного процесса // Вестник ИрГТУ. 2016. Т. 20. № 9. С. 65-73. DOI: 10.21285/1814-3520-2016-9-65-73

9. Петров А.В. Новые функциональные возможности перестановочной процедуры генерирования бинарного случайного процесса // Вестник ИрГТУ. 2016. Т. 20. № 10. С. 119-127. DOI: 10.21285/1814-3520-2016-10-119-127

10. А. с. № 2017610908. Свидетельство о государственной регистрации программы для ЭВМ, Российская Федерация. Расчет вероятностей компонентов перестановочной процедуры / А.В. Петров; правообладатель: ФГБО ВО «Иркутский национальный исследовательский технический университет»; заявл. 20.09.2016; опубл. 18.01.2017.

11. Петров А.В. К вопросу анализа вероятностных свойств компонентов бинарной перестановочной процедуры // Вестник ИрГТУ. 2016. Т. 20. № 11. С. 102-109. DOI: 10.21285/1814-3520-2016-11-102-109

12. Петров А.В. О систематизации вероятностных свойств компонентов бинарной перестановочной процедуры // Вестник ИрГТУ. 2016. Т. 20. № 12. С. 119-128. DOI: 10.21285/1814-3520-2016-12-119-128

13. Polge A.J., Holliday E.M., Bhagavan B.K. Generation of a pseudo-random set with desired correlation and probability distribution. Simulation, 1973. Nо. 5. P. 138-158.

14. Гладышев Е.Г. О периодически коррелированных случайных последовательностях // Доклады АН СССР. 1961. Т. 137. № 5.

15. Яворский И.Н., Юзефович Р.М., Кравец И.Б., Мацько И.Й. Свойства оценок характеристик периодически коррелированных случайных процессов при предварительном определении периода коррелированности // Известия высших учебных заведений. Радиоэлектроника, 2012. Т. 55. № 8. С. 3-14.

16. By Keh-Shin Lii, Murray Rosenblatt M. Estimation for almost periodic processes // The Annals of Statistics 2006. Vol. 34. No. 3. Р. 1115-1139.

17. Рожков В.А. Статистическая гидрометеорология. Часть 1. Термодинамика. СПб: ИД Санкт-Петербургского государственного университета, 2013. 188 с.

18. Игнатов Н.А. Прогнозирование временных рядов с регулярными циклическими компонентами с помощью модели периодически коррелированных случайных процессов // Научные труды: Институт народнохозяйственного прогнозирования РАН. 2011. Т. 9. С. 461-477.


Review

For citations:


Petrov A.V. METHOD OF TWO-DIMENSIONAL BINARY RANDOM PROCESS GENERATION. Proceedings of Irkutsk State Technical University. 2018;22(1):89-99. (In Russ.) https://doi.org/10.21285/1814-3520-2018-1-89-99

Views: 193


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)