Preview

iPolytech Journal

Advanced search

COMPARATIVE ANALYSIS OF TEMPERATURE REGULATION METHODS INDOORS WHEN INFRARED HEATERS IN OPERATION

https://doi.org/10.21285/1814-3520-2018-5-183-189

Abstract

The PURPOSE of this article is to improve the efficiency of using electrical energy and cost saving related to infrared heating systems in buildings. MATERIALS AND METHODS. The concrete floor in Irkutsk National Research Technical University classrooms where the experiment has been held is covered with laminate with installed thermocouples. The study is given to a patented heating device. The TRM138 device by OWEN company registers the signals from the thermocouples using the standard software supplied together with the Owen Process Manager devices. Resulting graphs of temperature field distribution are imported in MS Excel software. IMS-F1.SHCH1 device of OWEN company controlles the voltage of the consumed current and power. RESEARCH RESULTS. The study has been given to the temperature modes provided by infrared heaters depending on the applied thermoregulation devices. The factors influencing the effective operation of infrared heating systems are presented. The effect of control systems on efficient operation is demonstrated. A detailed analysis is given to the range spread of temperature fields depending on the effect of inner and/or outer factors. CONCLUSIONS. It has been determined that heating devices that use the patented heating element with a distributed heating layer stabilize the scatter of temperature indices of the heated surface. It also has been concluded on the need for considering the value of the convection and radiant heating component ratio taking into account the characteristics of the building and the ways of its operation when designing heating systems.

About the Authors

I. Yu. Shelekhov
National Research Irkutsk State Technical University
Russian Federation


N. L. Dorofeeva
National Research Irkutsk State Technical University
Russian Federation


M. I. Fedotova
National Research Irkutsk State Technical University
Russian Federation


References

1. Гошка Л.Л. К вопросу о необходимости внедрения эффективных систем климатизации зданий // Инженерно-строительный журнал. 2009. № 7. С. 33-37.

2. Cheng Y., Nin J., Gao N. Thermal comfort models: A review and numerical investigation // Building and Environment. 2012. Vol. 47. P. 13-22.

3. Orr H., Wang J., Fetsch D., Dumont R. Technical note: Airtightness of older-generation energy-efficient houses in Saskatoon // Journal of Building Physics. 2013. Vol. 36. P. 294-307.

4. Tenpieric M., Van der Spoel W., Cauberg H. An analytical model for calculating thermal bridge effects in high performance building enclosure // Journal of Building Physics. 2008. Vol. 31. P. 361-387.

5. Dennis Stanke Ventilation Where It’s Needed // ASHRAE Journal. Oct. 1998. P. 39-47.

6. Карницкий В.Ю., Ушников В.С. Инфракрасное отопление и эффективный вид отопления // Известия Тульского государственного университета. 2016. № 12-3. С. 96-98.

7. Ватузов Д.Н., Пуринг С.М., Филатова Е.Б. Способы повышения рационального потребления и распределения тепловой энергии в жилых зданиях // Инженерно-строительный вестник Прикаспия. 2013. Т. 2. № 3 (6). С. 33-35.

8. Dieckmann J. Improving humidity control with energy recovery // ASHRAE Journal. August. 2008. P. 38-45.

9. Шелехов И.Ю., Смирнов Е.И., Иноземцев В.П. Конструкции отопительных приборов на основе физико-математического моделирования // Научное обозрение. 2016. № 1. С. 42-48.

10. Куриленко Н.И., Михайлов Л.Ю., Давлятчин Р.Р., Ермолаев А.Н. Оптимизация работы инфракрасного обогрева рабочих мест общественных и производственных зданий // Актуальные проблемы строительства, экологии и энергосбережения в условиях Западной Сибири: сб. материалов Междунар. науч.-практ. конф. В 3 т. 2014. Т. 2. С. 115-119.

11. Шелехов И.Ю., Шишелова Т.И., Духовный Л.И. Особенности использования отопительного оборудования в зданиях с переменным тепловым режимом // Фундаментальные исследования. 2012. № 3-2. С. 437-440.

12. Lapinskiene V., Martinaitis V. The Framework of an Optimization Model for Building Envelope // Procedia Engineering. 2013. Vol. 57. P. 670-677.

13. Granadeiro V., Duarte J.P., Correia J.R., Leal V.M.S. Building envelope shape design in early stages of the design process: Integrating architectural design systems and energy simulation // Automation in Construction. 2013. Vol. 32. P. 196-209.

14. Шелехов И.Ю., Шишелова Т.И., Смирнов Е.И., Иноземцев В.П.Комбинированная электрическая система отопления для каркасных домов // Вестник Мордовского университета. 2017. Т. 27. № 2. С. 198-214. DOI: 10.15507/0236-2910.027.201702.198-214

15. Патент на полезную модель № 177507 РФ. Нагревательный прибор для комбинированной системы обогрева помещений с низкой теплоизоляцией / И.Ю. Шелехов, И.В. Шелехова, М.И. Шелехов, Е.И. Смирнов, В.П. Иноземцев, К.П. Кашко. Заявл. 16.12.2016; опубл. 28.02.2018. Бюл. № 7.


Review

For citations:


Shelekhov I.Yu., Dorofeeva N.L., Fedotova M.I. COMPARATIVE ANALYSIS OF TEMPERATURE REGULATION METHODS INDOORS WHEN INFRARED HEATERS IN OPERATION. Proceedings of Irkutsk State Technical University. 2018;22(5):183-189. (In Russ.) https://doi.org/10.21285/1814-3520-2018-5-183-189

Views: 205


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)