Preview

iPolytech Journal

Advanced search

FLEXIBILITY OPTIONS FOR SMART GRIDS. BASIC CONCEPTS

https://doi.org/10.21285/1814-3520-2018-5-166-182

Abstract

PURPOSE. Increased renewable generation requires new operation strategies of power systems especially at distribution levels. New mechanisms - so-called flexibility options - are necessary for smoothing the weather dependence of renewable generation and stabilizing the Smart Grid operation in this way. The paper presents different flexibility options of a Smart Grid. Moreover, some practical examples of modern Smart Grid operation have been given and the methodology for flexibility option planning has been presented. A wide range of modern references and summary make this review paper useful as an introduction to this future-oriented scientific topic. METHODS. Operation of power system with renewable sources often causes bottlenecks in the power grid. The used method is redispatshing the power generation or application of local flexibility options e.g. energy storages or demand management. RESULTS AND THEIR DISCUSSION. The electric power system of the future, which will use renewable generation, needs a flexibility option for stabile and economically profitable operation. The list of such flexibility options and the selection methodology of optimal flexibilities mix is presented in this paper. The optimal selection depends on the power system structure and current operation condition as well as can change rapidly. CONCLUSIONS. The strategies of power system operation are to be checked in some countries due to the wide presence of the large proportion of renewable and other decentralized generation. In the future the percentage of renewable generation will increase even faster therefore today there is the need to develop a wide range of flexibility options to stabilize and optimize the power system operation. Having overviewed the possible measures, this paper shows how to transfer them in general into the planning and operational practice. The paper provides both general remarks and real examples. The future works will focus on the development of algorithms for optimal flexibility and practical operation of Smart Grids.

About the Authors

P. Komarnicki
Fraunhofer Institute IFF Magdeburg, University of Applied Sciences Magdeburg, Germany
Russian Federation


M. Kranhold
50Hertz Transmission GmbH Berlin, Germany
Russian Federation


T. V. Sokolnikova
Irkutsk National Research Technical University
Russian Federation


Z. Styczynski
Otto-von-Guericke University Magdeburg, Germany
Russian Federation


References

1. BP Global (2018) Energy Outlook. https://www.bp.com/en/global/corporate/media/press-releases/energy-outlook-2018.html. Accessed March 20, 2018.

2. International Energy Agency (2017) World Energy Outlook. www.iea.org. Accessed March 20, 2018.

3. Komarnicki P, Lombardi P, Styczynski Z (2017) Electric Energy Storage System. Springer, Heidelberg New York.

4. Asafu-Adjaye J (2000) The relationship between energy consumption, energy prices and economic growth; time series evidence from Asian developing countries. Energy Economics 22, 615-625.

5. IEA (2008) Energy Consumption. https://www.iea.org/publications/freepublications/publication/Indicators_2008.pdf. Accessed March 20, 2018.

6. Energy Information Administration (2017) International Energy Outlook 2017. www.eia.gov/outlook/ieo/. Accessed March 20, 2018.

7. Commission of the European Communities. SEC (2007) A European Strategic Energy Technology Plan.Technology Map. 1510, Brussels 22.11.2007 https://ec.europa.eu/energy/en/topics/technology-and-innovation/strategic-energy-technology-plan. Accessed November 5, 2016

8. Buchholz B and Styczynski Z (2006) Integration of Renewable and Dispersed Resources: Lessons Learned from German Projects. General Meeting IEEE/PES, Montreal.

9. Buchholz B and Styczynski Z (2014) Smart Grid-Fundamentals and Technologies in Electricity Networks. Springer, Heidelberg

10. Buchholz B, Styczynski Z (2006) Communication requirements and solutions for secure power system operation. General Meeting IEEE/PES, Montreal.

11. Naumann A, Bielchev I, Voropai N, and Styczynski Z (2014) Smart grid automation using IEC 61850 and CIM standards. Control Engineering Practice, 25 (1), pp. 102-111. DOI: 10.1016/j.conengprac.2013.12.001

12. Bloess A, Schill W-P, Zerrahn A (2018) Power-to-heat for renewable energy integration: A review of technologies, modelling approaches, and flexibility potentials. Applied Energy, 210, pp. 1611-1626

13. De Santol L, Lo Basso G, Bruschi D, (2014) A small scale H2NG production plant in Italy: Techno-economic feasibility analysis and costs associated with carbon avoidance. Int. J. Hyd. Energy, 39 (12), pp. 6497-6517

14. Nastasi B, Lo Basso G (2015) Hydrogen to link heat and electricity in the transmission towards future Smart Grid Systems. Energy (in press).

15. Stötzer M, Hauer I, Richter M, Styczynski Z (2015) Potential of demand side integration to maximize use of renewable energy sources in Germany. Applied Energy, 146, pp. 344-352. DOI: 10.1016/j.apenergy.2015.02.015

16. Acatech (2018) Flexibilitätskonzepte für die Stromversorgung 2050: Technologien - Szenarien - Systemzusammenhänge http://www.forschungsradar.de/studiendatenbank/studie/detail/flexibilitaetskonzepte-fuer-die-stromversorgung2050.html?utm_source=Newsletter&utm_medium=newsletter&utm_campaign=renews_feb2016. Accessed March 20, 2018

17. Winkler T, Komarnicki P, Mueller G, Heideck G, Heuer M, Styczynski Z (2009) Electric vehicle charging stations in Magdeburg. 5th IEEE Vehicle Power and Propulsion Conference, VPPC '09, pp. 60-65. DOI: 10.1109/VPPC.2009.5289871

18. Price A, Wojszczyk B, Styczynski Z, Hatziargyriou N, Seethapathy R (2012) The practical application of advanced energy storage technologies within existing and planned market structures. CIGRE Session, Paris

19. Styczynski Z, Adamiak F, Abby C, do Vale Z, Cheng S, Favre-Perrod P, Ferret R, Itvani R, Iwasaki H, Joss G, Kieny C, Kleimaier M, Lazarawicz M, Lombardi P, Mecado PE, Soo Moon M, Ohler C, Pecas Lopes J, Pikutowski M, Price A, Roberts R, Seerhapathy R, Verma S.C, Vikelgaad H, Voropai N, Wojszczyk B (2011) Electric Energy Storage System. Report GIGRE WG C6.15. No. 458. GIGRE Paris ISBN: 978-2-85873-147-3

20. Verband der Netzbetreiber - VDN - E.V. BEIM VDEW (2007) DistributionCode 2007. Regeln für den Zugang zu Verteilnetzen (idF v. Version 1.1) (08.2007). URL. https://www.bdew.de/internet.nsf/id/A2A0475F2FAE8F44C12578300047C92F/$file/DistributionCode2007.pdf - Accessed November 5, 2016

21. Lombardi P, Sokolnikova T, Suslov K, Voropai N., Styczynski Z A (2016) Isolated power system in Russia: A chance for renewable energies? Renewable Energy, 90, pp. 532-541

22. Hauer I., Styczynski Z A, Komarnicki P, Stötzer M, Stein J (2012) Smart grid in critical situation. Do we need some standards for this? A German perspective. IEEE Power and Energy General Meeting

23. Hauer I, Wolter M, Stötzer M, Richter M, Styczynski Z A (2015) A probabilistic load shedding concept considering highly volatile local generation. Electric Poaer and Energy Systems, 67, pp. 478-487

24. Gils H C (2016) Economic potential for future demand response in Germany - Modelling approach and case study. Applied Energy, 161, pp. 401-415

25. Hass J, Cebulla F, Cao K, Nowak W, Palma-Behnke R, Rahmann C, Mancarella P (2017) Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems a review. Renewable and Sustainable Energy Review, 80, pp. 603-619

26. Cebulla F, Naegler T, Pohl M (2017) Electric energy storage in highly renewable European energy systems: Capacity requirements, spatial distribution, and storage dispatch. Journal of Energy Storage, 14, pp. 211-223

27. Hojevac N, Capuder T, Zhang N, Kuzle I, Kang C (2017) Corrective receding horizon scheduling of flexible distributed multi-energy microgrids. Applied Energy, 207, pp. 176-194

28. Hartmann N, Thomsen J, Wanapinit N (2018) Using demand side management and CHP in renewable dominated decentral energy systems: a case study. Computer Science-Research and Development, Springer, 33, pp. 193-198

29. Zhu J (2015) Optimization of Power SystemOperation. John Wiley & Sons, Inc.

30. Conejo A J, Baringo L. (2018) Power System Operations. Springer Berlin, New York


Review

For citations:


Komarnicki P., Kranhold M., Sokolnikova T.V., Styczynski Z. FLEXIBILITY OPTIONS FOR SMART GRIDS. BASIC CONCEPTS. Proceedings of Irkutsk State Technical University. 2018;22(5):166-182. (In Russ.) https://doi.org/10.21285/1814-3520-2018-5-166-182

Views: 238


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)