ВАРИАНТЫ ГИБКОСТИ ДЛЯ ИНТЕЛЛЕКТУАЛЬНЫХ СЕТЕЙ ЭЛЕКТРОСНАБЖЕНИЯ. ОСНОВНЫЕ ПОНЯТИЯ
https://doi.org/10.21285/1814-3520-2018-5-166-182
Аннотация
Об авторах
П. КомарницкиРоссия
М. Кранхольд
Россия
Т. Сокольникова
Россия
З. Стычински
Россия
Список литературы
1. BP Global (2018) Energy Outlook. https://www.bp.com/en/global/corporate/media/press-releases/energy-outlook-2018.html. Accessed March 20, 2018.
2. International Energy Agency (2017) World Energy Outlook. www.iea.org. Accessed March 20, 2018.
3. Komarnicki P, Lombardi P, Styczynski Z (2017) Electric Energy Storage System. Springer, Heidelberg New York.
4. Asafu-Adjaye J (2000) The relationship between energy consumption, energy prices and economic growth; time series evidence from Asian developing countries. Energy Economics 22, 615-625.
5. IEA (2008) Energy Consumption. https://www.iea.org/publications/freepublications/publication/Indicators_2008.pdf. Accessed March 20, 2018.
6. Energy Information Administration (2017) International Energy Outlook 2017. www.eia.gov/outlook/ieo/. Accessed March 20, 2018.
7. Commission of the European Communities. SEC (2007) A European Strategic Energy Technology Plan.Technology Map. 1510, Brussels 22.11.2007 https://ec.europa.eu/energy/en/topics/technology-and-innovation/strategic-energy-technology-plan. Accessed November 5, 2016
8. Buchholz B and Styczynski Z (2006) Integration of Renewable and Dispersed Resources: Lessons Learned from German Projects. General Meeting IEEE/PES, Montreal.
9. Buchholz B and Styczynski Z (2014) Smart Grid-Fundamentals and Technologies in Electricity Networks. Springer, Heidelberg
10. Buchholz B, Styczynski Z (2006) Communication requirements and solutions for secure power system operation. General Meeting IEEE/PES, Montreal.
11. Naumann A, Bielchev I, Voropai N, and Styczynski Z (2014) Smart grid automation using IEC 61850 and CIM standards. Control Engineering Practice, 25 (1), pp. 102-111. DOI: 10.1016/j.conengprac.2013.12.001
12. Bloess A, Schill W-P, Zerrahn A (2018) Power-to-heat for renewable energy integration: A review of technologies, modelling approaches, and flexibility potentials. Applied Energy, 210, pp. 1611-1626
13. De Santol L, Lo Basso G, Bruschi D, (2014) A small scale H2NG production plant in Italy: Techno-economic feasibility analysis and costs associated with carbon avoidance. Int. J. Hyd. Energy, 39 (12), pp. 6497-6517
14. Nastasi B, Lo Basso G (2015) Hydrogen to link heat and electricity in the transmission towards future Smart Grid Systems. Energy (in press).
15. Stötzer M, Hauer I, Richter M, Styczynski Z (2015) Potential of demand side integration to maximize use of renewable energy sources in Germany. Applied Energy, 146, pp. 344-352. DOI: 10.1016/j.apenergy.2015.02.015
16. Acatech (2018) Flexibilitätskonzepte für die Stromversorgung 2050: Technologien - Szenarien - Systemzusammenhänge http://www.forschungsradar.de/studiendatenbank/studie/detail/flexibilitaetskonzepte-fuer-die-stromversorgung2050.html?utm_source=Newsletter&utm_medium=newsletter&utm_campaign=renews_feb2016. Accessed March 20, 2018
17. Winkler T, Komarnicki P, Mueller G, Heideck G, Heuer M, Styczynski Z (2009) Electric vehicle charging stations in Magdeburg. 5th IEEE Vehicle Power and Propulsion Conference, VPPC '09, pp. 60-65. DOI: 10.1109/VPPC.2009.5289871
18. Price A, Wojszczyk B, Styczynski Z, Hatziargyriou N, Seethapathy R (2012) The practical application of advanced energy storage technologies within existing and planned market structures. CIGRE Session, Paris
19. Styczynski Z, Adamiak F, Abby C, do Vale Z, Cheng S, Favre-Perrod P, Ferret R, Itvani R, Iwasaki H, Joss G, Kieny C, Kleimaier M, Lazarawicz M, Lombardi P, Mecado PE, Soo Moon M, Ohler C, Pecas Lopes J, Pikutowski M, Price A, Roberts R, Seerhapathy R, Verma S.C, Vikelgaad H, Voropai N, Wojszczyk B (2011) Electric Energy Storage System. Report GIGRE WG C6.15. No. 458. GIGRE Paris ISBN: 978-2-85873-147-3
20. Verband der Netzbetreiber - VDN - E.V. BEIM VDEW (2007) DistributionCode 2007. Regeln für den Zugang zu Verteilnetzen (idF v. Version 1.1) (08.2007). URL. https://www.bdew.de/internet.nsf/id/A2A0475F2FAE8F44C12578300047C92F/$file/DistributionCode2007.pdf - Accessed November 5, 2016
21. Lombardi P, Sokolnikova T, Suslov K, Voropai N., Styczynski Z A (2016) Isolated power system in Russia: A chance for renewable energies? Renewable Energy, 90, pp. 532-541
22. Hauer I., Styczynski Z A, Komarnicki P, Stötzer M, Stein J (2012) Smart grid in critical situation. Do we need some standards for this? A German perspective. IEEE Power and Energy General Meeting
23. Hauer I, Wolter M, Stötzer M, Richter M, Styczynski Z A (2015) A probabilistic load shedding concept considering highly volatile local generation. Electric Poaer and Energy Systems, 67, pp. 478-487
24. Gils H C (2016) Economic potential for future demand response in Germany - Modelling approach and case study. Applied Energy, 161, pp. 401-415
25. Hass J, Cebulla F, Cao K, Nowak W, Palma-Behnke R, Rahmann C, Mancarella P (2017) Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems a review. Renewable and Sustainable Energy Review, 80, pp. 603-619
26. Cebulla F, Naegler T, Pohl M (2017) Electric energy storage in highly renewable European energy systems: Capacity requirements, spatial distribution, and storage dispatch. Journal of Energy Storage, 14, pp. 211-223
27. Hojevac N, Capuder T, Zhang N, Kuzle I, Kang C (2017) Corrective receding horizon scheduling of flexible distributed multi-energy microgrids. Applied Energy, 207, pp. 176-194
28. Hartmann N, Thomsen J, Wanapinit N (2018) Using demand side management and CHP in renewable dominated decentral energy systems: a case study. Computer Science-Research and Development, Springer, 33, pp. 193-198
29. Zhu J (2015) Optimization of Power SystemOperation. John Wiley & Sons, Inc.
30. Conejo A J, Baringo L. (2018) Power System Operations. Springer Berlin, New York
Рецензия
Для цитирования:
Комарницки П., Кранхольд М., Сокольникова Т., Стычински З. ВАРИАНТЫ ГИБКОСТИ ДЛЯ ИНТЕЛЛЕКТУАЛЬНЫХ СЕТЕЙ ЭЛЕКТРОСНАБЖЕНИЯ. ОСНОВНЫЕ ПОНЯТИЯ. Вестник Иркутского государственного технического университета. 2018;22(5):166-182. https://doi.org/10.21285/1814-3520-2018-5-166-182
For citation:
Komarnicki P., Kranhold M., Sokolnikova T.V., Styczynski Z. FLEXIBILITY OPTIONS FOR SMART GRIDS. BASIC CONCEPTS. Proceedings of Irkutsk State Technical University. 2018;22(5):166-182. (In Russ.) https://doi.org/10.21285/1814-3520-2018-5-166-182