Preview

iPolytech Journal

Advanced search

Effect of the anode paste composition of a self-baking anode on the performance of electrolytic aluminum production

https://doi.org/10.21285/1814-3520-2025-3-412-424

EDN: SQDXJN

Abstract

The present study aims to analyze the effect of the coke type (petroleum, pitch) in the composition of an anode paste for a self-baking anode on electrolysis indicators. We collected production data from operating S-8B(M) electrolytic cells with Soderberg anodes in the period from June to October 2024, including 172 and 186 electrolytic cells installed in Series 1 in Series 2, respectively. The yield of coal foam is higher in electrolytic cells with petroleum coke anodes: 15.9 kg per 1 electrolytic cell versus 8.4 kg in cells with anodes based on pitch coke paste. During the studied period, the specific power consumption for a series of cells operating with petroleum coke paste was 15,393 kWh/t Al versus 15,341 kWh/t Al. The consumption of petroleum coke anode paste per 1 electrolytic cell is 1.82 t higher than that of cells operating on pitch coke at an anode combustion rate of 1.5 and 1.47 cm/day, respectively. The anode pin rearrangement performed during the research period revealed 285 technological viola tions, e.g., pitch leaks and gassing, for petroleum coke anodes as compared to 121 violations for another coke type. A comparative analysis of the data collected during the maintenance of electrolytic cells with Soderberg anodes proved pitch coke anodes to have the lowest carbon foam yield, specific power and anode paste consumption, and anode combustion rate. Thus, using pitch coke in the anode paste for self-baking anodes of electrolytic cells can enhance the efficiency of aluminum production.

About the Authors

N. V. Nemchinova
Irkutsk National Research Technical University
Russian Federation

Nina V. Nemchinova, Dr. Sci. (Eng.), Professor, Head of the Department of Non-Ferrous Metals Metallurgy

83, Lermontov St., Irkutsk 664074



E. A. Tkach
Irkutsk National Research Technical University
Russian Federation

Evgenii A. Tkach, Master’s Degree Student

83, Lermontov St., Irkutsk 664074



A. A. Tyutrin
Irkutsk National Research Technical University
Russian Federation

Andrey A. Tyutrin, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department  of Non-Ferrous Metals Metallurgy

83, Lermontov St., Irkutsk 664074



S. S. Belskii
Irkutsk National Research Technical University
Russian Federation

Sergei S. Belskii, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department  of Non-Ferrous Metals Metallurgy

83, Lermontov St., Irkutsk 664074



References

1. Dudin M.N., Voykova N.A., Frolova E.E., Artemieva J.A., Rusakova E.P., Abashidze A.H. Modern trends and challenges of development of global aluminum industry. Metalurgija. 2017;56(1-2):255-258. EDN: XDPBLL.

2. Gorlanov E.S., Brichkin V.N., Polyakov А.А. Electrolytic production of aluminium. Review. Part 1. Conventional areas of development. Tsvetnye Metally. 2020;2:36-41. (In Russ.). https://doi.org/10.17580/tsm.2020.02.04. EDN: UTKUVO.

3. Korneev S.I. China’s aluminium sector and prospects of global aluminium industry. Tsvetnye Metally. 2021; 4:5-11. (In Russ.). https://doi.org/10.17580/tsm.2021.04.01. EDN: NLIPVD.

4. Sizyakov V.M., Polyakov P.V., Bazhin V.Yu. Modern trends and strategic objectives in the production of aluminum and its alloys in Russia. Tsvetnye Metally. 2022;7:16-23. (In Russ.). EDN: QRECGA.

5. Zhaowen Wang, Bingliang Gao, Zhongning Shi, Xianwei Hu,Fengguo Liu, Wenju Tao, Youjian Yang. Problems and technical measures in the development of China’s primary aluminum industry. In: Tsvetnye metally i mineraly – 2024: sbornik tezisov dokladov XII Mezhdunarodnogo kongressa = Non-ferrous metals and minerals–2024: book of abstracts of the Twelfth International Congress. 9–13 September 2024, Krasnoyarsk: Nauchno-innovacionnyj centr; 2024, p. 2-11. (In Russ.). EDN: CDPJHW.

6. Agnihotri A. Charting a promising path: the evolving landscape of India’s aluminium industry. In: Tsvetnye metally i mineraly – 2024: sbornik tezisov dokladov XII Mezhdunarodnogo kongressa = Non-ferrous metals and minerals– 2024: book of abstracts of the Twelfth International Congress. 9–13 September 2024, Krasnoyarsk: Nauchno innovacionnyj centr; 2024, p. 12-18. (In Russ.). EDN: BJDQYW.

7. Gorlanov E.S., Kawalla R., Polyakov A.A. Electrolytic production of aluminium. Review. Part 2. Development prospects. Tsvetnye Metally. 2020;10:42-49. (In Russ.). https://doi.org/10.17580/tsm.2020.10.06. EDN: JBGFQY.

8. Vinogradov A.M., Pinaev A.A., Vinogradov D.A., Puzin A.V., Shadrin V.G., Zor’ko N.V., et al. Increasing covering efficiency of Soderberg cells. Izvestiya. Non-Ferrous Metallurgy. 2017;1:19-30. (In Russ.). https://doi.org/ 10.17073/0021-3438-2017-1-19-30. EDN: XWTXTX.

9. Puzanov I.I., Volokhov I.N., Bykov R.YU., Muravyev S.A. Launch of RA-400 at Taishet aluminium smelter. In: Tsvetnye metally i mineraly – 2024: sbornik tezisov dokladov XII Mezhdunarodnogo kongressa = Non-ferrous metals and minerals– 2024: book of abstracts of the Twelfth International Congress. 9–13 September 2024, Krasnoyarsk: Nauchno-innovacionnyj centr; 2024, p. 213-218. (In Russ.). EDN: ZZCDFB.

10. Gorlanov E.S., Sizyakov V.M., Sharikov F.Yu., Spektoruk A.A., Butakova T.V. Problems and solutions to protection of carbon-graphite electrodes. iPolytech Journal. 2024;28(3):513-00. (In Russ.). https://doi.org/10.21285/1814 3520-2024-3-513-537. EDN: AEDFQP.

11. Shoppert A., Valeev D., Loginova I. Novel method of bauxite treatment using electroreductive Bayer process. Metals. 2023;13(9):1502. https://doi.org/10.3390/met13091502.

12. Pinaev A.A., Radionov E.Yu., Orlov I.A., Nemchinova N.V. Analysis of the magnetohydrodynamic parameters of S-8BM (S-8B) electrolyzers in the modernization of aluminum smelters. iPolytech Journal. 2024;28(1):162-177. (In Russ.). https://doi.org/10.21285/1814-3520-2024-1-162-177. EDN: XHFGYC.

13. Mann V., Buzunov V., Pingin V., Zherdev A., Grigoriev V. Environmental aspects of UC RUSAL’s aluminum smelters sustainable development. In: Chesonis C. (eds.). Light Metals. The Minerals, Metals and Materials Series. Cham: Springer; 2019, р. 553-563. https://doi.org/10.1007/978-3-030-05864-7_70. EDN: SIHUYY.

14. Frizorger V.K., Gil’debrandt E.M., Vershinina E.P. Monitoring performance of aluminum electrolyzers with Soderberg anode. Izvestiya. Non-Ferrous Metallurgy. 2013;4:11-14. (In Russ.). EDN: QZRKFB.

15. Burdonov A.E., Zelinskaya E.V., Gavrilenko L.V., Gavrilenko A.A. Investigation of substantial composition of alumina-bearing material of aluminium electrolysers for usage in primary aluminium technology. Tsvetnye metally. 2018;3:32-38. (In Russ.). https://doi.org/10.17580/tsm.2018.03.05. EDN: YUCHKI.

16. Grjotheim K. Introduction to aluminium electrolysis: understanding the Hall-Héroult process. Introduction to aluminium electrolysis. Düsseldorf: Aluminium-Verlag; 1993, 260 р. 17. Thonstad J. Aluminium electrolysis: fundamentals of the Hall Héroult process. Aluminium electrolysis. Düsseldorf: Aluminium-Verlag; 2001, 359 р.

17. Vetyukov M.M., Tsyplakov A.M., Shkol’nikov S.N. Metallurgy of aluminum and magnesium. Moscow: Metallurgiya; 1987, 320 р. (In Russ.).

18. Chalykh V.I., Nemchinova N.V., Ayushin B.I., Bogdanov Yu.V. Technical and economic comparison of electrolyzers with baked anodes and self-baking anodes and upper current carrier. Izvestiya. Non-Ferrous Metallurgy. 2005;2:21 26. (In Russ.). EDN: JVUCFH.

19. Yanko E.A. Anodes of aluminum electrolyzers. Moscow: Ruda i metally; 2001, 671 р. (In Russ.).

20. Gil’debrandt E.M., Vershinina E.P., Frizorger V.K. Anode paste quality in aluminum electrolysis technology with Soderberg anode. Izvestiya. Non-Ferrous Metallurgy. 2014;1:17-20. (In Russ.). EDN: RYLGUB.

21. Sidorov O.F., Seleznyov A.N. Prospects for the production and consumer property improvement of coal tar electrode pitches. Rossijskij himicheskij zhurnal. 2006;50(1):16-24. (In Russ.). EDN: GZQCPJ.

22. Tkach E.A., Nemchinova N.V. Influence of coke-pitch composition on Soderberg anode quality in aluminum production. In: Perspektivy razvitiya, sovershenstvovaniya i avtomatizacii vysokotekhnologichnyh proizvodstv: materialy XV Vserossijskoj nauchno-prakticheskoj konferencii s mezhdunarodnym uchastiem = Prospects for development, improvement and automation of high-tech industries: Proceedings of the 15th All-Russian scientific and practical conference with international participation. 23–24 April 2025, Irkutsk. Irkutsk: Irkutsk National Research Technical University; 2025, р. 117-122. (In Russ.). EDN: OSNOOR.

23. Anshits A.G., Kurteeva L.I., Tsyganova S.I., Suzdorf A.R., Anshits N.N., Morozov S.V. Comparative assessment of carcinogenic emissions when using medium- and low-temperature pitches in aluminum production in Soderberg cells. Chemistry for Sustainable Development. 2001;9;345-352. (In Russ.).

24. Taskina A.V., Nemchinova N.V. Certification of reference materials for carbon materials used in the production of primary aluminum. Molodezhnyj vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019;4:82 88. (In Russ.). EDN: MMVTKS.

25. Nemchinova N.V., Taskina A.V. Developing methods to determine impurities in carbon materials used in primary aluminum production. In: Integraciya nauki, obrazovaniya i proizvodstva – osnova realizacii Plana natsii (Saginovskie chteniya no. 12): trudy Mezhdunarodnoj nauchno-prakticheskoj online-konferencii = Integration of science, education and production as the basis for implementing the Nation Plan (Saginov Readings No. 12): Proceedings of the International scientific and practical online conference. 18–19 June 2020, Karaganda. Karaganda: Abylkas Saginov Karaganda Technical University; 2020, part 2, р. 156-158. (In Russ.).

26. Foosnæs T., Naterstad T., Bruheim M., Grjotheim K. Anode dusting in Hall-Heroult cells. In: Tomsett A., Johnson J. (eds.). Essential Readings in Light Metals: Electrode Technology for Aluminum Production. 2016, vol. 4, p. 633-642. https://doi.org/10.1002/9781118647745.ch83.

27. Belousova N.V., Sharypov N.A., Shakhray S.G., Bezrukikh A.I. Coal froth in an aluminium electrolyzer: the problems and proposed solutions. Tsvetnye Metally. 2017;8:42-49. (In Russ.). https://doi.org/10.17580/tsm.2017.08.06. EDN: ZIBLAJ.

28. Bugnion L., Fischer J.-C. Еffect of carbon dust on the electrical resistivity of cryolite bath. In: Wiliams E. (eds.). Light Metals. Cham: Springer; 2016, vol. 92, no. 1-2, p. 587-591. https://doi.org/10.1007/978-3-319-48251-4_99.

29. Sadler B., Welch B. Reducing carbon dust? — Needs and possible directions. In: 9th Australasian Aluminium Smelting Technology Conference and Workshops. Terrigal; 2007, p. 1-14.

30. Perruchoud R.C., Hulse K.L., Fischer W.K., Schmidt-Hatting W. Dust generation and accumulation for changing anode quality and cell parameters. In: Tomsett A., Johnson J. (eds.). Essential Readings in Light Metals. 1999, р. 649-656. https://doi.org/10.1002/9781118647745.ch85.

31. Gudmundsson H. Anode dusting from a potroom perspective at Nordural and correlation with anode properties In: Tomsett A., Johnson J. (eds.). Essential Readings in Light Metals. Cham: Springer; 2011, p. 657-662. https://doi.org/10.1007/978-3-319-48200-2_86.


Review

For citations:


Nemchinova N.V., Tkach E.A., Tyutrin A.A., Belskii S.S. Effect of the anode paste composition of a self-baking anode on the performance of electrolytic aluminum production. iPolytech Journal. 2025;29(3):412-424. (In Russ.) https://doi.org/10.21285/1814-3520-2025-3-412-424. EDN: SQDXJN

Views: 131


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)