Software development for balance calculations of ilmenite concentrate processing
https://doi.org/10.21285/1814-3520-2025-3-399-411
EDN: GEUWWK
Abstract
The aim is to develop dedicated software for automating the calculation of material flow balances in the process flow diagram of ilmenite concentrate processing in order to optimize titanium production, reduce raw material losses, and enhance the efficiency of process management. Material flow analysis is used to comprehensively monitor materials flow at all stages of titanium-containing raw material processing. The stages include reduction smelting, slag chlorination in the melt, titanium tetrachloride extraction and purification, magnesiothermic metal reduction, and vacuum separation. The software package developed in Python consists of four modules. Each module calculates the material balance for a specific technological process stage. Interaction with the user is implemented through MS Excel for the convenience of data entry and visualization of results. The software package ensured the calculation of com plete material balances with a deviation of less than 0.2%. The analysis revealed technology-related titanium losses at the level of 21.4% compared to the initial amount of metal in the concentrate. It was shown that the most substantial Tilosses occurred at the stages of reduction smelting (6.63%, mainly into dust and cast iron) and titanium tetrachloride (IV) purification (12.92%, into by-products). Smaller losses were recorded during slag chlorination (0.33%), titanium tetrachloride (IV) reduction (2.50%), and reaction mass separation (0.51%). The designed programs were published in the official Rospatent Bulletin Computer Programs. Databases. Topology of Integrated Circuits. The developed software package enables the automation of material balance calculations in titanium production from ilmenite concentrate. The key areas for improving the technological process include modernizing the reduction smelting and titanium tetra chloride purification stages where maximum losses of the target metal are observed.
About the Authors
T. R. KosovtsevaRussian Federation
Tatiana R. Kosovtseva, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Digital Modeling
2, 21st Line, St Petersburg 199106
E. V. Sizyakova
Russian Federation
Ekaterina V. Sizyakova, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Metallurgy Department
2, 21st Line, St Petersburg 199106
V. A. Slobodin
Russian Federation
Viktor A. Slobodin, Student
2, 21st Line, St Petersburg 199106
References
1. Golovina E.I., Grebneva A.V. Management of groundwater resources in transboundary territories (on the example of the Russian Federation and the Republic of Estonia). Journal of Mining Institute. 2021;252:788-800. (In Russ). https://doi.org/10.31897/PMI.2021.6.2. EDN: SMZDQY.
2. Golovina E.I., Khloponina V.S., Tsiglianu P.P., Zhu Runchu. Organizational, economic and regulatory aspects of groundwater resources extraction by individuals (case of the Russian Federation). Resources. 2023;12(8):89. https://doi.org/10.3390/resources12080089. EDN: IWIOFX.
3. Kovalskaya K.V., Gorlanov E.S. Al – Ti – B master alloys: structure formation in modified alloys. Tsvetnye metally. 2022;7:57-64. (In Russ). https://doi.org/10.17580/tsm.2022.07.06. EDN: CQDUOG.
4. Pashkevich M., Evdokimova M. Finely-dispersed wastes of titanium production as an additive for manufacturing of building materials. Ecology and Industry of Russia. 2025;29(2):19-23. (In Russ.). https://doi.org/10.18412/1816 0395-2025-2-19-23. EDN: KMWLNS.
5. Sadykhov G.B. Fundamental problems and prospects for the use of titanium raw materials in Russia. Izvestiya. Ferrous Metallurgy. 2020;63(3-4):178-194. (In Russ.). https://doi.org/10.17073/0368-0797-2020-3-4-178-194. EDN: JNYSEU.
6. Makeev A.B., Bryanchaninova N.I., Krasotkina A.O. Unique titanium deposits of Timan: genesis and age issues. Journal of Mining Institute. 2022;255:275-289. https://doi.org/10.31897/PMI.2022.32. EDN: ZVBWXU.
7. Karasev М.А., Pospehov G.B., Astapenko T.S., Shishkina V.S. Stress-strain behavior prediction models for weak manmade soil. Mining Informational and Analytical Bulletin. 2023;11:49-69. (In Russ). https://doi.org/10.25018/0236_1493_2023_11_0_49. EDN: EOTJVE.
8. Pardo F.R.O., Herrera J.A.P., Perez M.C. R., Cabascango V.E.Q., Urbano A.P.M. Scientific fundamentals for the use of serpentinized rocks from the eastern region of Cuba. Journal of Physics: Conference Series. 2023;2573(1):012033. https://doi.org/10.1088/1742-6596/2573/1/012033. EDN: FWIMBS.
9. Garmata V.A., Petrunko A.N., Galitsky N.V., Olesov N.V., Sandler R.A. Titanium: properties, raw materials, physico chemical bases and production methods. Moscow: Metallurgiya; 1983, 558 p. (In Russ). 10. Nadolsky A.P. Calculations of processes and equipment for refractory metal production. Moscow: Metallurgiya; 1980, 127 p. (In Russ).
10. Kuzin E.N., Mokrushin L.G., Kruchinina N.E. Assessment of the possibility of using leucoxene-quartz concentrate as raw material for production of aluminium and magnesium titanates. Journal of Mining Institute. 2023;264:886 894. (In Russ). https://doi.org/10.31897/PMI.2023.15. EDN: PTGWCU.
11. Cisternas L.A., Ordóñez J.I., Jeldres R.I., Serna-Guerrero R. Toward the implementation of circular economy strategies: an overview of the current situation in mineral processing. Mineral Processing and Extractive Metallurgy Review. 2021;43(6):775-797. https://doi.org/10.1080/08827508.2021.1946690. EDN: LWCBLW.
12. Farjana S.H., Huda N., Mahmud M.P., Lang C. Towards sustainable TiO2 production: an investigation of environmental impacts of ilmenite and rutile processing routes in Australia. Journal of Cleaner Production. 2018;196:1016-1025. https://doi.org/10.1016/j.jclepro.2018.06.156.
13. Fedorova E.R., Pupysheva E.A., Morgunov V.V. Modeling of particle size distribution in the presence of flocculant. Symmetry. 2024;16(1):114. https://doi.org/10.3390/sym16010114. EDN: XDACLL.
14. Fedorova E.R., Morgunov V.V., Pupysheva E.A. Effect of variation of internal diameter along the length of a rotary kiln on material movement. Non-ferrous Metals. 2024;1:28-34. https://doi.org/10.17580/nfm.2024.01.05. EDN: AECPQC.
15. Glazatov A.N., Molodtsev M.S., Kazakov A.M., Brazyulis L.A. Optimized product quality control at Kola MMC’s mineral processing plant. Tsvetnye metally. 2020;12:88-93. (In Russ). https://doi.org/10.17580/tsm.2020.12.13. EDN: YGCHEU.
16. Bushuev A.B., Boikov V.I., Bystrov S.V., Grigoriev V.V., Mansurova O.K. Synthesis of optimal Information and energy schemes of measuring and converting devices. Mechatronics, Automation, Control. 2021;22(10):518-526. (In Russ). https://doi.org/10.17587/mau.22.518-526. EDN: XNQXQB.
17. Nemchinova N.V., Patrushоv A.E., Tyutrin A.A. Study of the process of processing electric steel melting dusts by the method of physicochemical modeling. Ecology and Industry of Russia. 2024;28(12):13-19. (In Russ). https://doi.org/10.18412/1816-0395-2024-12-13-19. EDN: CFWWQL.
18. Anufriev A.S., Lebedik E.A., Smirnov A.A. Automated ball charge control system for grinding units. Obogashchenie Rud. 2024;1:3-9. (In Russ). https://doi.org/10.17580/or.2024.01.01. EDN: PQBKRZ.
19. Kulchitsky A.A., Mansurova O.K., Nikolaev M.Yu. Recognition of defects in hoisting ropes of metallurgical equipment by an optical method using neural networks. Chernye Metally. 2023;3:81-88. (In Russ). https://doi.org/10.17580/chm.2023.03.13. EDN: SUXTGW.
20. Skamyin A., Shklyarskiy Y., Lobko K., Dobush V., Sutikno T., Jopri M.H. Impedance analysis of squirrel-cage induction motor at high harmonics condition. Indonesian Journal of Electrical Engineering and Computer Science. 2024;33(1):31-41. https://doi.org/10.11591/ijeecs.v33.i1.pp31-41.
21. Bazhin V.Yu., Ustinova Ya.V., Fedorov S.N., Shalabi M.E.Kh. Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials. Journal of Mining Institute. 2023;261:384-391. (In Russ). EDN: RTQXSE.
22. Bazhin V., Masko O. Monitoring of the behaviour and state of nanoscale particles in a gas cleaning system of an ore-thermal furnace. Symmetry. 2022;14(5):923. https://doi.org/10.3390/sym14050923. EDN: FMOKAC.
23. Tokarev I.S. Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities. Journal of Mining Institute. 2025;272:171-180. (In Russ). EDN: UIZSOQ.
24. Quiroz V.E, Calvopiña D. Training of highly qualified specialists in the field of software development: poblems and solutions in higher educational institutions of Ecuador. In: Hybrid Methods of Modeling and Optimization in Complex Systems: ITM Web of Conferences. 2024;59:04008. https://doi.org/10.1051/itmconf/20245904008.
25. Efimov D.A., Gospodarikov A.P. Technical and technological aspects of the use of Reuleaux triangular profile rolls in crushing units in the ore processing plant. Mining Informational and Analytical Bulletin. 2022;10-2:117-126. (In Russ). https://doi.org/10.25018/0236_1493_2022_102_0_117. EDN: JEBNYR.
26. Gendler S.G., Vasilenko T.A., Stepantsova A.Yu. Investigation of mass transfer of hard coal during its transportation to the place of temporary storage. Mining Informational and Analytical Bulletin. 2023;9-1:135-148. (In Russ). https://doi.org/10.25018/0236_1493_2023_ 91_0_135. EDN: KLQAFM.
27. Martynov S.A., Liu Z., Luzin A.G. Equipment upgrade and repair. Metallurgist. 2024;68(7):1073-1079. https://doi.org/10.1007/s11015-024-01817-z. EDN: IQXGQX.
28. Martynov S.A., Liu Z. Controlled placement of electrodes in an ore-smelting furnace and its effect on the reaction zone. Metallurgist. 2024;67(11-12):1866-1877. https://doi.org/10.1007/s11015-024-01684-8. EDN: XSBYIU.
29. Oksengoyt E.A., Kunitskiy N.A., Petrov P.A., Shestakov A.K. Modern equipment by Soyuztsvetmetavtomatika for detecting aerosols and spills of harmful pollutants. Tsvetnye metally. 2023;4:61-65. (In Russ). https://doi.org/10.17580/tsm.2023.04.08. EDN: UJLKQC.
30. Cheremisina O.V., Vasiliev R.E., Netrusov A.O., Ter-Oganesyants A.K. Hot curing and lime boiling of high arsenic copper concentrate pressure oxidation product and their effect on precious metals recovery during subsequent cyanidation. Tsvetnye metally. 2024;2:19-26. (In Russ). https://doi.org/10.17580/tsm.2024.02.02. EDN: IMNEDS.
31. Hu Xinyi, Luo Fanjie, Lin Jing, Wang Minxi, Li Xin. Dynamic material flow analysis of titanium sponge in China: 2000–2019. Journal of Cleaner Production. 2022;371:133704. https://doi.org/10.1016/j.jclepro.2022.133704. EDN: GTFHLL.
32. Li Xin, Lin Jing, Zhang Di, Xiong Zehui, He Xiaoqiong, Yuan Miao, et al. Material flow analysis of titanium dioxide and sustainable policy suggestion in China. Resources Policy. 2020;67:101685. https://doi.org/10.1016/j.resourpol.2020.101685. EDN: LREGSU.
33. Sadykhov G.B., Goncharov K.V., Olyunina T.V., Goncharenko T.V. Phase composition features of the vanadium containing titanium slags produced from the reduction smelting of the titanomagnetite concentrate from the Kuranakhsk deposit. Metally. 2010;4:3-10. (In Russ). EDN: NAVQUT.
34. Sadykhov G.B., Goncharov K.V., Goncharenko T.V., Olyunina T.V. Features of phase transformations during oxidation of calcium-containing titanium-vanadium slags and their influence on calcium vanadate formation. Metally. 2013;2:3-11. (In Russ). EDN: PXPXPD.
Review
For citations:
Kosovtseva T.R., Sizyakova E.V., Slobodin V.A. Software development for balance calculations of ilmenite concentrate processing. iPolytech Journal. 2025;29(3):399-411. (In Russ.) https://doi.org/10.21285/1814-3520-2025-3-399-411. EDN: GEUWWK