Preview

iPolytech Journal

Advanced search

Lithium sorption from natural brine

https://doi.org/10.21285/1814-3520-2025-3-376-388

EDN: YNRNQC

Abstract

The study aims to investigate the efficiency of lithium extraction from highly mineralized calcium chlo ride brine of the Siberian Craton using a synthesized sorbent based on layered aluminum-lithium hydroxide. The re search into the sorbent properties (swelling characteristics, mechanical strength) was conducted in accordance with GOST 51641-2000 using an ELMI S-3L.A20 orbital shaker and a high-precision analytical balance CAS CAUW-220D. The sorption kinetics was studied under static conditions. The total dynamic capacitance and dynamic exchange ca pacity (before “breakthrough”) at brine flow rates from 1 to 3 column volumes per hour were determined in dynamic experiments. 100 continuous sorption-desorption cycles were carried out. The analysis of solutions for the element content was performed by the ICP-AES method with an iCAP 7400 Radial inductively coupled plasma atomic emis sion spectrometer. According to the conducted research, the swelling capacity of the sorbent was 19%, grindability equaled 1.72%, and abrasion amounted to 0.27%. The time to reach semi-equilibrium during lithium sorption under static conditions was 3 minutes. The total static capacitance equaled 5.5 mg/g; the total dynamic exchange capacity amounted to 5.5–5.7 mg/g. At a brine flow rate of 2 column volumes per hour, 95% lithium extraction was achieved. For commercial lithium recovery at a level of 95% at a flow rate of 1–2 column volumes per hour, 2 columns are re quired (or 3 columns at a flow rate of 3 column volumes per hour). It is shown that the sorbent capacity is maintained at a level of 5.6 mg/g throughout 100 sorption-desorption cycles. The concentration ratio (Ca2++Mg2+)/Li⁺ in the eluate is reduced 682-fold compared to the original brine. Thus, the sorbent demonstrates high efficiency for lithium extraction from brines with extremely high calcium ion content. The high values   of the rate of reaching semi-equilib rium, capacity, mechanical strength, as well as operational stability over 100 sorption-desorption cycles confirm the industrial potential of sorption extraction of lithium from highly mineralized calcium chloride brines.

About the Authors

S. A. Aleynikov
Siberian Federal University
Russian Federation

Sergey A. Aleynikov, Postgraduate Student

79 Svobodny pr., Krasnoyarsk 660041



N. V. Belousova
Siberian Federal University
Russian Federation

Natalia V. Belousova, Dr. Sci. (Chem.), Professor, Head of the Non-Ferrous Metals Metallurgy Department

79 Svobodny pr., Krasnoyarsk 660041



References

1. Kudryavtsev P.G. Lithium: Global reserves and application prospects. Alternative Energy and Ecology. 2016;1 2:107-108. (In Russ.). https://doi.org/10.15518/isjaee.2016.13-14.072-088. EDN: YSQEVV.

2. Malhi G.S., Tanious M., Das P., Coulston C.M., Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. 2013;27(2):135-153. https://doi.org/10.1007/s40263-013-0039-0. EDN: RICABV.

3. Zarone F., Ruggiero G., Leone R., Breschi L., Leuci S., Sorrentino R. Zirconia-reinforced lithium silicate (ZLS) mechanical and biological properties: a literature review. Journal of Dentistry. 2021;109:103661. https://doi.org/ 10.1016/j.jdent.2021.103661. EDN: INSAAT.

4. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Mikhaylov E.D. Aluminum-lithium alloys for aircraft building. Metallurg. 2012;31-35. (In Russ.). EDN: OZKXPR.

5. Petrescu F.I.T., Apicella A., Petrescu R.V.V., Kozaitis S.P., Bucinell R.B., Aversa R., Abu-Lebdeh T.M. Environmental protection through nuclear energy. American Journal of Applied Sciences. 2016;13(9):941-946. https://doi.org/10.3844/ajassp.2016.941.946.

6. Donahue C.J. Lubricating grease: a chemical primer. Journal of chemical education. 2006;83(6):862. https://doi.org/10.1021/ed083p862.

7. Ebensperger A., Maxwell P., Moscoso C. The lithium industry: Its recent evolution and future prospects. Resources Policy. 2005;30(3):218-231. https://doi.org/10.1016/j.resourpol.2005.09.001.

8. Sultanova A.G., Michurin S.V. Some issues of lithium geochemistry and its distribution in Rifhean rocks of the Southern Urals. Geologicheskii vestnik. 2024;2:65-80. (In Russ.). https://doi.org/10.31084/2619-0087/2024-2-6. EDN: COOISR.

9. Xu Wenhua, He Lihua, Zhao Zhongwei. Lithium extraction from high Mg/Li brine via electrochemical intercalation/ de-intercalation system using LiMn2O4 materials. Desalination. 2021;503:114935. https://doi.org/10.1016/j.desal.2021.114935. EDN: CLOYGN.

10. Mironov Yu.B., Karpunin A.M., Fuks V.Z. Formation epochs and types of lithium deposits in foreign countries. Regional geology and metallogeny. 2022;92:105-116. (In Russ.). https://doi.org/10.52349/0869-7892_2022_92_105-116. EDN: QCEVYK.

11. Tadesse B., Makuei F., Albijanic B., Dyer L. The beneficiation of lithium minerals from hard rock ores: а review. Minerals Engineering. 2019;131:170-184. https://doi.org/10.1016/j.mineng.2018.11.023. EDN: DRPKWM.

12. Sarkarov R.A., Belan S.I., Guseinov N.M. Assessment of the current state and prospects for the production of lithium and its compounds in Russia. Industrial Economics. 2022;1-2:57-68. (In Russ.). https://doi.org/10.47576/2712-7559_2022_2_1_57. EDN: ASXGDV.

13. Wang Jing, Koenig Jr.G.M. Direct lithium extraction using intercalation materials. Chemistry–A European Journal. 2024;30(4):e202302776. https://doi.org/10.1002/chem.202302776. EDN: QCJNUW.

14. Hochstetter C. Untersuchung über die zusammensetzung einiger mineralien. Journal für Praktische Chemie. 1842;27(1):375-378. https://doi.org/10.1002/prac.18420270156.

15. Serna C.J., Rendon J.L., Iglesias J.E. Crystal-chemical study of layered [Al2Li(OH)6]+X−·nH2O. Clays and Clay Minerals.1982;30(3):180-184. https://doi.org/10.1346/ccmn.1982.0300303. EDN: ARHFUU.

16. Kapustin A.E. Inorganic anion exchangers. Russian Chemical Reviews. 1991;60(12):2685–2717. (In Russ.). https://doi.org/10.1070/RC1991v060n12ABEH001155.

17. Li Jun, Luo Qinglong, Dong Mingzhe, Nie Guoliang, Liu Zhong, Wu Zhijian. Synthesis of granulated Li/Al LDHs adsorbent and application for recovery of Li from synthetic and real saltlake brines. Hydrometallurgy. 2022;209:105828. https://doi.org/10.1016/j.hydromet.2022.105828. EDN: JBIJCU.

18. Luo Qinglong, Mingzhe Dong, Nie Guoliang, Liu Zhong, Wu Zhijian, Li Jun. Extraction of lithium from salt lake brines by granulated adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;628:127256. https://doi.org/10.1016/j.colsurfa.2021.127256. EDN: UCJREX.

19. Paranthaman M.P., Li Ling, Luo Jiaqi, Hoke T., Ucar H., Moyer B.A., et al. Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents. Environmental Science and Technology. 2017;51(22):13481-13486. https://doi.org/10.1021/acs.est.7b03464. EDN: YKBOAA.

20. Zhong Jing, Lin Sen, Yu Jianguo. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al-LDHs adsorbent. Separation and Purification Technology. 2021;256:117780. https://doi.org/10.1016/j.seppur.2020.117780. EDN: DYMNHS.

21. Wu Lili, Li Ling, Evans S.F., Eskander T.A., Moyer B.A., Hu Zhichao, et al. Lithium aluminum‐layered double hydroxide chlorides (LDH): formation enthalpies and energetics for lithium ion capture. Journal of the American Ceramic Society. 2019;102(5):2398-2404. https://doi.org/10.1111/jace.16150.

22. Isupov V.P., Kotsupalo N.P., Nemudry A.P., Menzeres L.T. Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions. Studies in surface science and catalysis. 1999;120А:621-652. https://doi.org/10.1016/s0167-2991(99)80567-9. EDN: LFMMWH.

23. Zhong Jing, Lin Sen, Yu Jianguo. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. Desalination. 2021;505:114983. https://doi.org/10.1016/j.desal.2021.114983. EDN: VTOMNU.

24. Zhong Jing, Lin Sen, Yu Jianguo. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides. Journal of Colloid and Interface Science. 2020;572:107-113. https://doi.org/10.1016/j.jcis.2020.03.081. EDN: BHEWSW.

25. Li Dongdong, Zhang Ning, Gao Dandan, Zhuang Ziyu, Zeng Dewen. Phase chemistry for hydration sensitive (de) intercalation of lithium aluminum layered double hydroxide chlorides. ACS Materials Au. 2023;4(1):45-54. https://doi.org/10.1021/acsmaterialsau.3c00063. EDN: UOSSQO.

26. Alekseev S.V., Alekseeva L.P., Gladkov A.S., Trifonov N.S., Serebryakov E.V., Pavlov S.S., et al. Brines in deep horizons of the Udachnaya kimberlite pipe. Geodynamics and Tectonophysics. 2018;9(4):1235-1253. (In Russ.). https://doi.org/10.5800/GT-2018-9-4-0393. EDN: XSUIEX.

27. Voldman G.M. Fundamentals of extraction and ion-exchange processes in metallurgy. Moscow: Metallurgy; 1983, 376 p. (In Russ.).

28. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Foundations of Crystallography. 1976;А32(5):751-767. https://doi.org/10.1107/ S0567739476001551.

29. Schmid R., Miah A.M., Sapunov V.N. A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and Born radii). Physical Chemistry Chemical Physics. 2000;2(1):97-102. https://doi.org/10.1039/a907160a. EDN: LFXXEX.


Review

For citations:


Aleynikov S.A., Belousova N.V. Lithium sorption from natural brine. iPolytech Journal. 2025;29(3):376-388. (In Russ.) https://doi.org/10.21285/1814-3520-2025-3-376-388. EDN: YNRNQC

Views: 156


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)