Method for normalizing initial data of wind measurements in complex terrain areas
https://doi.org/10.21285/1814-3520-2025-3-353-362
EDN: XPQDFV
Abstract
We set out to develop a method for normalizing the initial data of wind measurements obtained from meteorological stations for the terrain conditions of the wind turbine or power plant location. To solve the problem, we propose a numerical solution of a system of differential equations for the conditions of a turbulent environment in the lower surface layer of atmosphere at a height of 1000 m and less from the earth surface. The analogous object is a 300 kW Kamai wind turbine installed in Ust-Kamchatsk, Russian Federation. We use a simplified system of equations, which accounts for the terrain to determine the wind velocity at the wind power plant site. Satellite maps and well-known tables of reduced landscape roughness are used to determine the terrain. The feasibility of this method, as well as the effect of initial data accuracy on the forecast output of the wind power plant are assessed using the example of wind resources in Ossora, Kamchatka Peninsula, Russian Federation. The proposed approach reduces the error of the subsequent forecast for the wind power plant output to 15%. Moreover, the proposed method requires no long-term observations of daily and annual changes in wind velocity, which is of particular importance for newly built wind power plants. The meteorological network provides data relevant for the region and describes its characteristics as a whole, thus complicating the determination of the resource at a specific point of the region with a time interval of up to 3 h. The proposed solution concerns both the design and operation of a wind power plant by allowing the site distribution of wind velocity to be obtained even when data for a larger region are used.
About the Authors
N. V. AlikhodzhinaRussian Federation
Nadezhda V. Alikhodzhina, Assistant Professor of the Department of Hydropower and Renewable Energy Sources
14/1, Krasnokazarmennaya St., Moscow 111250
D. A. Titov
Russian Federation
Dmitry A. Titov, Associate Professor of the Department of Mathematical and Computer Modeling
14/1, Krasnokazarmennaya St., Moscow 111250
M. G. Tyagunov
Russian Federation
Mikhail G. Tyagunov, Dr. Sci. (Eng.), Professor, Professor of the Department of Hydropower and Renewable Energy Sources
14/1, Krasnokazarmennaya St., Moscow 111250
References
1. Deryugina G.V., Ignatiev E.V., Mett V.D. Approbation of the wind turbine software package. Bulletin of Moscow Power Engineering Institute. 2023;4:80-90. (In Russ). https://doi.org/10.24160/1993-6982-2023-4-80-90. EDN: IUCQQE.
2. Mortensen N.G., Landberg L., Troen I., Lundtang Petersen E. Wind Atlas analysis and application program (WAsP). In: User’s guide. Risø National Laboratory; 1993, vol. 2, no. 666, 134 р.
3. Zubarev V.V., Minin V.A., Stepanov I.R. The use of wind energy in the North: state, efficiency conditions, prospects: monograph. Leningrad: Nauka; 1989, 208 p. (In Russ). EDN: AHDKIG.
4. Nikolaev V.G., Ganaga S.V., Kudryashov Yu.I. National inventory of wind energy resources of Russia and methodological principles for their determination. Moscow: Atmograf; 2008, 581 p. (In Russ). EDN: QTFSXD.
5. Zhang Yagang, Kong Xue, Wang Jingchao, Wang Hui, Cheng Xiaodan. Wind power forecasting system with data enhancement and algorithm improvement. Renewable & Sustainable Energy Reviews. 2024;196:114349. https://doi.org/10.1016/j.rser.2024.114349.
6. Karasu S., Altan A., Saraç Z., Hacioglu R. Prediction of wind speed with non-linear autoregressive (NAR) neural networks. In: Ağları ile Tahmini: 25th Signal Processing and Communications Applications Conference (SIU). 15–18 May 2017, Antalya. Antalya: IEEE; 2017, р. 128703. https://doi.org/10.1109/SIU.2017.7960507.
7. Alikhodzhina N.V., Deryugina G.V., Krupin G.V. Daily forecast of wind power generation based on ground-based MS data. In: Fyodorovskie chteniya – 2019 = Fedorov’s Readings – 2019. 20–22 November 2019, Moscow. Moscow: MEI; 2019, p. 318-323. (In Russ). EDN: QVSESZ.
8. Niu Xinsong, Wang Jiyang. A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting. Applied Energy. 2019;241:519-539. https://doi.org/10.1016/j.apenergy.2019.03.097.
9. Kariniotakis G.N., Stavrakakis G.S., Nogaret E.F. Wind power forecasting using advanced neural networks models. IEEE Transactions on Energy Conversion. 1996;11(4):762-767. https://doi.org/10.1109/60.556376.
10. Potter C.W., Negnevitsky M. Very short-term wind forecasting for Tasmanian power generation. IEEE Transactions on Power Systems. 2006;21(2):965-972. https://doi.org/10.1109/TPWRS.2006.873421.
11. Ribeiro M.H.D.M., Da Silva R.G., Moreno S., Mariani V.C. Efficient bootstrap stacking ensemble learning model applied to wind power generation forecasting. International Journal of Electrical Power & Energy Systems. 2022;136:107712. https://doi.org/10.1016/j.ijepes.2021.107712.
12. Jiang Zheyong, Che Jinxing, Wang Lina. Ultra-short-term wind speed forecasting based on EMD-VAR model and spatial correlation. Energy Conversion and Management. 2021;250(1-2):114919. https://doi.org/10.1016/j.enconman.2021.114919.
13. Deryugina G.V., Chernov D.A., Tyagunov M.G., Alikhodzhina N.V. Wind shear profile models derived from the Kamchatka peninsula meteorological masts data. Bulletin of Moscow Power Engineering Institute. 2019;1:35-42. (In Russ). https://doi.org/10.24160/1993-6982-2019-1-35-42. EDN: YWTSJV.
14. Deryugina G.V., Ignatiev E.V., Golubkov U.F. Methodology for developing a model for short-term wind speed forecasting and wind turbine power generation. Novoe v rossijskoj elektroenergetike. 2024;10:6-21. (In Russ). EDN: DJKAPZ.
15. Alikhodzhina N.V., Tyagunov M.G., Shestopalova T.A. An overview of existing models and methods for calculating the main characteristics of the wind at a certain point. Kazan State Power Engineering University Bulletin. 2024;16(3):76-93. (In Russ). EDN: UXVION.
16. Zubakin V.А. Short-term forecasting of wind farm generation. Energy policy. 2022;8:20-27. (In Russ). https://doi.org/10.46920/2409-5516_2022_8174_20. EDN: VFNJCH.
17. Solovev B.A., Gamisonia G.K. Wind power prediction methods for shelf wind power plants. Electrical and data processing facilities and systems. 2022;18(3-4):108-120. (In Russ). https://doi.org/10.17122/1999-5458-2022- 18-3-4-108-120. EDN: VUQXCF.
18. Lv Sheng-Xiang, Wang Lin. Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization. Applied Energy. 2022;311(5):118674. https://doi.org/10.1016/j.apenergy.2022.118674. EDN: IIPCWS.
19. Laikhtman D.L., Yudin M.I. Lower air layer transformation under the influence of underlying surface. In: Doklad AN SSSR = Report of the USSR Academy of Sciences. Leningrad: Hydrometeoizdat; 1953, vol. 93, no. 2, p. 249-252. (In Russ).
20. Orlenko L.R. The structure of the planetary boundary layer. Leningrad: Hydrometeoizdat; 1979, 270 p. (In Russ).
21. Nadezhina E.D. Influence of a roughness jump of the underlying surface on the turbulent boundary layer mode. Trudy Glavnoj geofizicheskoj observatorii im. A.I. Voejkova. 1970;257:109-116. (In Russ).
22. Radikevich V.M. Transformation of air flow dynamic characteristics under the influence of underlying surface roughness variation. Izvestiya Akademii nauk SSSR. Fizika atmosfery i okeana. 1971;7(12):1241-1250. (In Russ).
23. Derbentseva A.M. Soil erosion and protection. Vladivostok: Dal’nevostochnyj universitet; 2006, 85 р. (In Russ).
Review
For citations:
Alikhodzhina N.V., Titov D.A., Tyagunov M.G. Method for normalizing initial data of wind measurements in complex terrain areas. iPolytech Journal. 2025;29(3):353-362. (In Russ.) https://doi.org/10.21285/1814-3520-2025-3-353-362. EDN: XPQDFV





















