Preview

iPolytech Journal

Advanced search

Effects of original microgeometry on the surface quality of AMg6 aluminum alloy parts following ultrasonic surface plastic straining

https://doi.org/10.21285/1814-3520-2025-3-308-321

EDN: ZGFVII

Abstract

We study the effect of original surface microgeometry and the number of indenter passes on the microhardness and roughness of the surface layer of products treated by ultrasonic surface plastic straining. The study was conducted using cylindrical specimens made of AMg6 aluminum alloy. Ultrasonic surface plastic straining was performed according to a tangential input of ultrasonic vibrations for the number of indenter passes varying from 1 to 5. The original roughness of aluminum specimens ranged from Ra 0.44 to Ra 3 µm. The quality of the surface treated by ultrasonic surface plastic straining was assessed based on roughness and microhardness parameters. 

For the selected range of original surface roughness, the roughness and microhardness of the specimens reached stable values after 1-2 intender passes. The efficiency of ultrasonic surface plastic straining for products made of AMg6 aluminum alloy is largely determined by the microgeometric and physicomechanical characteristics of the original surface, as well as by the number of processing cycles. Thus, a significant decrease in roughness and increase in microhardness were observed in the formed specific cellular microgeometry of the surface. Increasing the number of passes above 1-2 appears ineffective in terms of further improving the quality of the surface layer. The obtained results can be used to optimize technological processes in mechanical engineering, aviation, automobile, and other industries, optimize the selection of finishing operations, ensure contemporary quality requirements for the processed surface of aluminum alloy products, and increase the economic efficiency of production.

About the Authors

A. V. Ivanova
Novosibirsk State Technical University
Russian Federation

Alina V. Ivanova, Postgraduate Student 

20 Prospekt K. Marksa, Novosibirsk 630073 



A. V. Zelenina
Novosibirsk State Technical University
Russian Federation

Anna V. Zelenina, Postgraduate Student

20 Prospekt K. Marksa, Novosibirsk 630073 



V. P. Gileta
Novosibirsk State Technical University
Russian Federation

Viktor P. Gileta, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Mechanical Engineering Technology 

20 Prospekt K. Marksa, Novosibirsk 630073 



References

1. Kuvshinov M.O., Khlybov A.A. Comparative analysis of the methods of surface plastic deformation. In: Ural’skaya shkola molodyh metallovedov: materialy XVIII Mezhdunarodnoj nauchno-tekhnicheskoj Ural’skoj shkoly-seminara metallovedov – molodyh uchenyh = Ural school of young metallurgists: Proceedings of 18th International scientific and technical Ural school-seminar of metallurgists – young scientists. 21–23 November 2017, Ekaterinburg. Ekaterinburg: Ural Federal University named after the first President of Russia B.N. Yeltsin; 2017, р. 37-42. (In Russ.). EDN: YRSFDW.

2. Maximov J., Duncheva G., Anchev A., Dunchev V., Argirov Ya., Todorov V., et al. Effects of heat treatment and severe surface plastic deformation on mechanical characteristics, fatigue, and wear of Cu-10Al-5Fe bronze. Materials. 2022;15(24):8905. https://doi.org/10.3390/ma15248905.

3. Brostow W., Czechowski K., Polowski W., Rusek P., Toboła D., Wronska I. Slide diamond burnishing of tool steels with adhesive coatings and diffusion layers. Materials Research Innovations. 2013;17(4):269-277. https://doi.org/ 10.1179/1433075X12Y.0000000060.

4. Uddin M., Santifoller R., Hall C., Schlaefer Т. Effect of combined grinding–burnishing process on surface integrity, tribological, and corrosion performance of laser-clad Stellite 21 alloys. Advanced Engineering Materials. 2022;25(8):2201332. https://doi.org/10.1002/adem.202201332.

5. Santos V., Uddin M., Hall C. Mechanical surface treatments for controlling surface integrity and corrosion resistance of Mg alloy implants: a review. Journal of Functional Biomaterials. 2023;14(5):242. https://doi.org/10.3390/jfb14050242.

6. Ferencsik V., Varga G. The influence of diamond burnishing process parameters on surface roughness of low-alloyed aluminium workpieces. Machines. 2022;10(7):564. https://doi.org/10.3390/machines10070564.

7. Schubnell J., Farajian M. Fatigue improvement of aluminium welds by means of deep rolling and diamond burnishing. Welding in the World. 2022;66(4):699-708. https://doi.org/10.1007/s40194-021-01212-1.

8. Nestler A., Schubert A. Effect of machining parameters on surface properties in slide diamond burnishing of aluminium matrix composites. Materials Today: Proceedings. 2015;2-1:S156-S161. https://doi.org/10.1016/j.matpr.2015.05.033.

9. Varga G., Ferencsik V. Investigation of the effect of surface burnishing on stress condition and hardening phenomena. Tehnički vjesnik. 2022;29(4):1247-1253. https://doi.org/10.17559/TV-20211110171854.

10. Xiong Qiwen, Zhang Pо, Zhai Wenzheng, Luo Xiaoshuang, Cai Zhaobing, Zheng Feilong, et al. Effect of ultrasonic surface rolling on the fretting wear property of 7075 aluminum alloy. Metals. 2023;13(10):1674. https://doi.org/10.3390/met13101674. 11. Velázquez-Corral E., Wagner V., Jerez-Mesa R., Lluma J., Travieso-Rodriguez J.A., Dessein G. Analysis of ultrasonic vibration-assisted ball burnishing process on the tribological behavior of AISI 316L cylindrical specimens. Materials. 2023;16(16):5595. https://doi.org/10.3390/ma16165595.

11. Tao Jiahao, Zhang Xin, Huang Lianpeng, Wang Hao, Zhang Yuanhu, Wang Zehua, et al. Microstructure and property evolutions of Q345B steel during ultrasonic shot peening. Crystals. 2023;13(2):299. https://doi.org/10.3390/cryst13020299.

12. Ma Xiguan, Zhang Weihai, Xu Shubo, Sun Kangwei, Hu Xinzhi, Ren Guocheng, et al. Effect of ultrasonic surface rolling process on surface properties and microstructure of 6061 aluminum alloy. Materials Research. 2023;26 (9-10):e20230322. https://doi.org/10.1590/1980-5373-MR-2023-0322.

13. John M., Ralls A.M., Dooley S.C., Thazhathidathil A.K.V., Perka A.K., Kuruveri U.B., et al. Ultrasonic surface rolling process: properties, characterization, and applications. Applied Sciences. 2021;11(22):10986. https://doi.org/10.3390/app112210986.

14. Kishore A., John M., Ralls A.M., Jose S.A., Kuruveri U.B., Menezes P.L. Ultrasonic nanocrystal surface modification: processes, characterization, properties, and applications. Nanomaterials. 2022;12(9):1415. https://doi.org/10.3390/nano12091415.

15. Fernández-Osete I., Estevez-Urra A., Velázquez-Corral E., Valentin D., Llumà J., Jerez-Mesa R., et al. Ultrasonic vibration-assisted ball burnishing tool for a lathe characterized by acoustic emission and vibratory measurements. Materials. 2021;14(19):5746. https://doi.org/10.3390/ma14195746.

16. Teimouri R., Amini S., Bami A.B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6. Measurement. 2018;116:129-139. https://doi.org/10.1016/j.measurement.2017.11.001.

17. Velázquez‐Corral E., Llumà J., Jerez-Mesa R., Wagner V., Dessein G., Travieso-Rodriguez J.A. Fatigue enhancement and hardening effect through ultrasonic vibration‐assisted ball‐burnishing process on AISI 1045 steel. Fatigue and Fracture of Engineering Materials and Structures. 2024;47(1):203-219. https://doi.org/10.1111/ffe.14180.

18. Biffi C.A., Bassani P., Nematollahi M., Moghaddam N.S., Amerinatanzi A., Mahtabi M.J., et al. Effect of ultrasonic nanocrystal surface modification on the microstructure and martensitic transformation of selective laser melted nitinol. Materials. 2019;12(19):3068. https://doi.org/10.3390/ma12193068.

19. Salmi M., Huuki J., Ituarte I.F. The ultrasonic burnishing of cobalt-chrome and stainless steel surface made by additive manufacturing. Progress in Additive Manufacturing. 2017;2(1):31-41. https://doi.org/10.1007/s40964- 017-0017-z.

20. Kumar S., Kumar D., Singh I., Rath D. An insight into ultrasonic vibration assisted conventional manufacturing processes: a comprehensive review. Advances in Mechanical Engineering. 2022;14(6):168781322211078. https://doi.org/10.1177/16878132221107812.

21. Rovin S.L., Dikun A.O. Investigation of the effect of ultrasonic treatment during crystallization on the structure and properties of deformable aluminum alloys. Foundry production and metallurgy. 2023;(3):28-35. (In Russ.). https://doi.org/10.21122/1683-6065-2023-3-28-35. EDN: UPCUPD.

22. John M., Ralls A.M., Dooley S.C., Thazhathidathil A.K.V., Perka A.K., Kuruveri U.B., et al. Ultrasonic surface rolling process: properties, characterization, and applications. Applied Sciences. 2021;11(22):10986. https://doi. org/10.3390/app112210986.

23. John M., Kalvala P.R., Misra M., Menezes P.L. Peening techniques for surface modification: processes, properties, and applications. Materials. 2021;14(14):3841. https://doi.org/10.3390/ma14143841.

24. Xu Nan, Jiang Xiaochen, Shen Xuehui, Peng Hao. Improving the surface integrity and tribological behavior of a high-temperature friction surface via the synergy of laser cladding and ultrasonic burnishing. Lubricants. 2023;11(9):379. https://doi.org/10.3390/lubricants11090379.

25. Fu Lei, Li Xiulan, Lin Li, Wang Zhengguo, Zhang Yingqian, Luo Yunrong, et al. Study on microstructure evolution mechanism of gradient structure surface of AA7075 aluminum alloy by ultrasonic surface rolling treatment. Materials. 2023;16(16):5616. https://doi.org/10.3390/ma16165616.


Review

For citations:


Ivanova A.V., Zelenina A.V., Gileta V.P. Effects of original microgeometry on the surface quality of AMg6 aluminum alloy parts following ultrasonic surface plastic straining. iPolytech Journal. 2025;29(3):308-321. (In Russ.) https://doi.org/10.21285/1814-3520-2025-3-308-321. EDN: ZGFVII

Views: 179


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)