Влияния исходной микрогеометрии на качество поверхности деталей из алюминиевого сплава АМг6 после ультразвукового поверхностного пластического деформирования
https://doi.org/10.21285/1814-3520-2025-3-308-321
EDN: ZGFVII
Аннотация
Цель – изучение влияния исходной микрогеометрии поверхности и количества проходов индентора на микротвердость и шероховатость поверхностного слоя изделий после ультразвукового поверхностного пластического деформирования. Исследование проводилось на цилиндрических образцах из алюминиевого сплава АМг6. Обработка осуществлялась методом ультразвукового поверхностного пластического деформирования по тангенциальной схеме ввода ультразвуковых колебаний и при изменении количества проходов индентора от 1 до 5. Диапазон исходной шероховатости алюминиевых образцов – от Ra 0,44 до Ra 3 мкм. Оценка качества обработанной ультразвуковым поверхностным пластическим деформированием поверхности осуществлялась на основе измерения параметров шероховатости и микротвердости. Экспериментально установлено, что для выбранного диапазона исходной шероховатости поверхности показатели шероховатости и микротвердости образцов достигают стабильных значений после 1-2 проходов ультразвуковой обработки. Показано, что эффективность ультразвукового поверхностного пластического деформирования деталей из алюминиевого сплава АМг6 в значительной степени определяется микрогеометрическими и физико-механическими характеристиками исходной поверхности и количеством циклов обработки, при этом наблюдается существенное снижение параметров шероховатости и прирост микротвердости в сочетании с формированием специфической ячеистой микрогеометрии поверхности. Установлено, что увеличение количества проходов (более 1-2) не является эффективным способом дальнейшего улучшения качества поверхностного слоя. Полученные результаты могут быть использованы для оптимизации технологических процессов в машиностроительной, авиационной, автомобильной и других отраслях промышленности, рационализации подбора финишных операций, обеспечения современных требований к качеству обработанной поверхности деталей из алюминиевых сплавов, что позволит повысить экономическую эффективность производства.
Об авторах
А. В. ИвановаРоссия
Иванова Алина Владиславовна, аспирант
630073, г. Новосибирск, пр. К. Маркса, 20
А. В. Зеленина
Россия
Зеленина Анна Владимировна, аспирант, Новосибирский государственный технический университет
630073, г. Новосибирск, пр. К. Маркса, 20
В. П. Гилета
Россия
Гилета Виктор Павлович, к.т.н., доцент, доцент кафедры технологии машиностроения, Новосибирский государственный технический университет
630073, г. Новосибирск, пр. К. Маркса, 20
Список литературы
1. Кувшинов М.О., Хлыбов А.А. Сравнительный анализ методов поверхностного пластического деформирования (ППД) // Уральская школа молодых металловедов: матер. XVIII Междунар. науч.-техн. Уральской школы-семинара металловедов – молодых ученых (г. Екатеринбург, 21–23 ноября 2017 г.). Екатеринбург: УРФУ им. первого Президента России Б.Н. Ельцина, 2017. С. 37–42. EDN: YRSFDW.
2. Maximov J., Duncheva G., Anchev A., Dunchev V., Argirov Ya., Todorov V., et al. Effects of heat treatment and severe surface plastic deformation on mechanical characteristics, fatigue, and wear of Cu-10Al-5Fe bronze // Materials. 2022. Vol. 15. Iss. 24. Р. 8905. https://doi.org/10.3390/ma15248905.
3. Brostow W., Czechowski K., Polowski W., Rusek P., Toboła D., Wronska I. Slide diamond burnishing of tool steels with adhesive coatings and diffusion layers // Materials Research Innovations. 2013. Vol. 17. Iss. 4. P. 269–277. https://doi.org/10.1179/1433075X12Y.0000000060.
4. Uddin M., Santifoller R., Hall C., Schlaefer Т. Effect of combined grinding–burnishing process on surface integrity, tribological, and corrosion performance of laser-clad Stellite 21 alloys // Advanced Engineering Materials. 2022. Vol. 25. Iss. 8. Р. 2201332. https://doi.org/10.1002/adem.202201332.
5. Santos V., Uddin M., Hall C. Mechanical surface treatments for controlling surface integrity and corrosion resistance of Mg alloy implants: a review // Journal of Functional Biomaterials. 2023. Vol. 14. Iss. 5. P. 242. https://doi.org/10.3390/jfb14050242.
6. Ferencsik V., Varga G. The influence of diamond burnishing process parameters on surface roughness of low-alloyed aluminium workpieces // Machines. 2022. Vol. 10. Iss. 7. P. 564. https://doi.org/10.3390/machines10070564.
7. Schubnell J., Farajian M. Fatigue improvement of aluminium welds by means of deep rolling and diamond burnishing // Welding in the World. 2022. Vol. 66. No. 4. P. 699–708. https://doi.org/10.1007/s40194-021-01212-1.
8. Nestler A., Schubert A. Effect of machining parameters on surface properties in slide diamond burnishing of aluminium matrix composites // Materials Today: Proceedings. 2015. Vol. 2-1. P. S156–S161. https://doi.org/10.1016/j.matpr.2015.05.033.
9. Varga G., Ferencsik V. Investigation of the effect of surface burnishing on stress condition and hardening phenomena // Tehnički vjesnik. 2022. Vol. 29. No. 4. P. 1247–1253. https://doi.org/10.17559/TV-20211110171854.
10. Xiong Qiwen, Zhang Pо, Zhai Wenzheng, Luo Xiaoshuang, Cai Zhaobing, Zheng Feilong, et al. Effect of ultrasonic surface rolling on the fretting wear property of 7075 aluminum alloy // Metals. 2023. Vol. 13. Iss. 10. P. 1674. https://doi.org/10.3390/met13101674.
11. Velázquez-Corral E., Wagner V., Jerez-Mesa R., Lluma J., Travieso-Rodriguez J.A., Dessein G. Analysis of ultrasonic vibration-assisted ball burnishing process on the tribological behavior of AISI 316L cylindrical specimens // Materials. 2023. Vol. 16. Iss. 16. P. 5595. https://doi.org/10.3390/ma16165595.
12. Tao Jiahao, Zhang Xin, Huang Lianpeng, Wang Hao, Zhang Yuanhu, Wang Zehua, et al. Microstructure and property evolutions of Q345B steel during ultrasonic shot peening // Crystals. 2023. Vol. 13. Iss. 2. P. 299. https://doi.org/10.3390/cryst13020299.
13. Ma Xiguan, Zhang Weihai, Xu Shubo, Sun Kangwei, Hu Xinzhi, Ren Guocheng, et al. Effect of ultrasonic surface rolling process on surface properties and microstructure of 6061 aluminum alloy // Materials Research. 2023. Vol. 26. Iss. 9-10. P. e20230322. https://doi.org/10.1590/1980-5373-MR-2023-0322.
14. John M., Ralls A.M., Dooley S.C., Thazhathidathil A.K.V., Perka A.K., Kuruveri U.B., et al. Ultrasonic surface rolling process: properties, characterization, and applications // Applied Sciences. 2021. Vol. 11. Iss. 22. P. 10986. https://doi.org/10.3390/app112210986.
15. Kishore A., John M., Ralls A.M., Jose S.A., Kuruveri U.B., Menezes P.L. Ultrasonic nanocrystal surface modification: processes, characterization, properties, and applications // Nanomaterials. 2022. Vol. 12. Iss. 9. P. 1415. https://doi.org/10.3390/nano12091415.
16. Fernández-Osete I., Estevez-Urra A., Velázquez-Corral E., Valentin D., Llumà J., Jerez-Mesa R., et al. Ultrasonic vibration-assisted ball burnishing tool for a lathe characterized by acoustic emission and vibratory measurements // Materials. 2021. Vol. 14. No. 19. P. 5746. https://doi.org/10.3390/ma14195746.
17. Teimouri R., Amini S., Bami A.B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6 // Measurement. 2018. Vol. 116. P. 129–139. https://doi.org/10.1016/j.measurement.2017.11.001.
18. Velázquez‐Corral E., Llumà J., Jerez-Mesa R., Wagner V., Dessein G., Travieso-Rodriguez J.A. Fatigue enhancement and hardening effect through ultrasonic vibration‐assisted ball‐burnishing process on AISI 1045 steel // Fatigue and Fracture of Engineering Materials and Structures. 2024. Vol. 47. Iss. 1. P. 203–219. https://doi.org/10.1111/ffe.14180.
19. Biffi C.A., Bassani P., Nematollahi M., Moghaddam N.S., Amerinatanzi A., Mahtabi M.J., et al. Effect of ultrasonic nanocrystal surface modification on the microstructure and martensitic transformation of selective laser melted nitinol // Materials. 2019. Vol. 12. No. 19. P. 3068. https://doi.org/10.3390/ma12193068.
20. Salmi M., Huuki J., Ituarte I.F. The ultrasonic burnishing of cobalt-chrome and stainless steel surface made by additive manufacturing // Progress in Additive Manufacturing. 2017. Vol. 2. Iss. 1. P. 31–41. https://doi.org/10.1007/s40964-017-0017-z.
21. Kumar S., Kumar D., Singh I., Rath D. An insight into ultrasonic vibration assisted conventional manufacturing processes: a comprehensive review // Advances in Mechanical Engineering. 2022. Vol. 14. Iss. 6. P. 168781322211078. https://doi.org/10.1177/16878132221107812.
22. Ровин С.Л., Дикун А.О. Исследование влияния ультразвуковой обработки в процессе кристаллизации на структуру и свойства деформируемых алюминиевых сплавов // Литье и металлургия. 2023. № 3. С. 28–35. https://doi.org/10.21122/1683-6065-2023-3-28-35. EDN: UPCUPD.
23. John M., Ralls A.M., Dooley S.C., Thazhathidathil A.K.V., Perka A.K., Kuruveri U.B., et al. Ultrasonic surface rolling process: properties, characterization, and applications // Applied Sciences. 2021. Vol. 11. Iss. 22. P. 10986. https://doi.org/10.3390/app112210986.
24. John M., Kalvala P.R., Misra M., Menezes P.L. Peening techniques for surface modification: processes, properties, and applications // Materials. 2021. Vol. 14. Iss. 14. P. 3841. https://doi.org/10.3390/ma14143841.
25. Xu Nan, Jiang Xiaochen, Shen Xuehui, Peng Hao. Improving the surface integrity and tribological behavior of a high-temperature friction surface via the synergy of laser cladding and ultrasonic burnishing // Lubricants. 2023. Vol. 11. Iss. 9. P. 379. https://doi.org/10.3390/lubricants11090379.
26. Fu Lei, Li Xiulan, Lin Li, Wang Zhengguo, Zhang Yingqian, Luo Yunrong, et al. Study on microstructure evolution mechanism of gradient structure surface of AA7075 aluminum alloy by ultrasonic surface rolling treatment // Materials. 2023. Vol. 16. Iss. 16. P. 5616. https://doi.org/10.3390/ma16165616.
Рецензия
Для цитирования:
Иванова А.В., Зеленина А.В., Гилета В.П. Влияния исходной микрогеометрии на качество поверхности деталей из алюминиевого сплава АМг6 после ультразвукового поверхностного пластического деформирования. iPolytech Journal. 2025;29(3):308-321. https://doi.org/10.21285/1814-3520-2025-3-308-321. EDN: ZGFVII
For citation:
Ivanova A.V., Zelenina A.V., Gileta V.P. Effects of original microgeometry on the surface quality of AMg6 aluminum alloy parts following ultrasonic surface plastic straining. iPolytech Journal. 2025;29(3):308-321. (In Russ.) https://doi.org/10.21285/1814-3520-2025-3-308-321. EDN: ZGFVII