Preview

iPolytech Journal

Advanced search

Development of a modular brake disc assembly for spot-type disc brake systems with enhanced performance characteristics

https://doi.org/10.21285/1814-3520-2025-2-216-233

EDN: NUIVAY

Abstract

This study presents a modular brake disc assembly designed to improve the performance characteristics of automotive spot-type disc brake systems. We examined disc brake system configurations in 2017 fifth-generation Ford Explorer vehicles. Three principal limitations of conventional brake discs were identified: excessive thermal gradients and internal stresses within disc components, non-repairable structural designs, and insufficient heat transfer from friction surfaces during operation. To address these challenges, we employed the theory of inventive problem solving (TRIZ), which led to the development of a modular decomposition approach for principal structural elements of the brake disc. The design process involved 3D modelling techniques within the KOMPAS-3D v21 educational software package, which facilitates comprehensive virtual prototyping and analysis. Finite element meshing and subsequent static strength calculations, using the von Mises criteria, revealed stress-strain distribution zones in the developed components of the modular brake disc assembly. The findings underscore the importance of enhancing structural design and selecting materials with optimal physical properties, including density, yield strength, elastic modulus, and thermal conductivity. This approach would reduce the inertial masses of components and the unsprung masses of the vehicle, while increasing the guaranteed safety factor and improving heat dissipation from the friction pairs in spot-type disc brake systems. In addition, 3D printing methods with wax-like filaments, essential for investment casting in steel production, were reviewed and applied. The study demonstrates that the selection of optimal materials enhances braking efficiency and reduces the stopping distance and time of a vehicle when using the proposed design. Recommendations for print settings and modes are also provided.

About the Authors

E. F. Sklyarenko
Kuban State Technological University
Russian Federation

Evgeniy F. Sklyarenko, Postgraduate Student

2, Moskovskaya St., Krasnodar 350072



Yu. D. Shevtsov
Kuban State Technological University
Russian Federation

Yuriy D. Shevtsov, Dr. Sci. (Eng.), Professor, Professor of the Department of Transport Processes and Technological Complexes

2, Moskovskaya St., Krasnodar 350072



References

1. Petrik A.A., Vol’chenko N.A., Purgal P.Yu., Vol’chenko D.A. Friction units. Krasnodar: Kuban State Technological University; 2003, vol. 2, 220 p. (In Russ). EDN: QNANGL.

2. Volchenko N.A., Polyakov P.A., Skrypnyk V.S., Vitvickij V.S. Energy loading of tribounits of vehicle disc-pad brakes. Eurasian Union of Scientists. 2018;3-2:51-59. (In Russ). EDN: XNFTED.

3. Sklyarenko E.F. Increasing energy intensity and efficiency of vehicle disc-pad brake devices . In: Innovacionnyj potencial razvitiya nauki v sovremennom mire: dostizheniya i innovacii: sbornik nauchnyh statej po materialam XII Mezhdunarodnoj nauchno-prakticheskoj konferencii = Innovative potential for science development in the modern world: achievements and innovations: collection of scientific articles on the materials of the 12th International scientific and practical conference. 28 February 2023, Ufa. Ufa; 2023, р. 91-111. (In Russ).

4. Sainath A., Dehadray P.М., Bharath P., Rao L.В. The thermal and stress analysis of disc brake. In: Materials Science and Engineering: IOP Conference Series. 2021;1128(1):012015. https://doi.org/10.1088/1757-899X/1128/1/012015.

5. Mrausi S., Trimble J., Olabanji O., Tlhabadira I., Daniyan I.A. Investigating the mechanical properties of automotive brake disc and pad developed from locally sourced materials. In: 14th International Conference on Mechanical and Intelligent Manufacturing Technologies. 2023;197-203. https://doi.org/10.1109/ICMIMT59138.2023.10200088.

6. Barik N., Khadari S.A.R. Analysis of disc brake. In: Materials Science and Engineering: IOP Conference Series. 2021;1123:012004. https://doi.org/10.1088/1757-899X/1123/1/012004.

7. Sau S.K., Pulinat K.G., Moss P.N., Ranjeet P., Prabu S.S. A comparative study on the thermal and dynamic analysis of a disc brake using Ansys. Materials Today: Proceedings. 2022;65(8):3714-3723. https://doi.org/10.1016/j.matpr.2022.06.318.

8. López-Flores, Jennifer-Guadalupe, Cordero-Guridi, De Jesús J., Ovando-Cuevas, Romeo E., et al. Thermal-structural numerical analysis of the brake and disc system of a Formula SAE 2024 type vehicle. Journal Mathematical and Quantitative Methods. 2024;8(1-13):e30814113. https://doi.org/10.35429/JMQM.2024.8.14.3.13.

9. Maronati D., Oberti L., Ronki N. Ventilated brake disc. Patent RF, no. 2668785; 2018. (In Russ.).

10. Villemin Ya., Vittke K., Klingel’hefer A., Pipilis A. Brake disc rotor with internal ventilation. Patent RF, no. 2556269; 2015. (In Russ.).

11. Vurs S., Melan A. Assembled shaft brake disc. Patent RF, no. 2628419; 2017. (In Russ.).

12. Fedotov E.S., Litvinov A.E., Starodub M.V. Causes of damage to brake discs (Part 1). Mekhatronika, avtomatika i robototekhnika. 2020;6:56-61. (In Russ.). https://doi.org/10.26160/2541-8637-2020-6-56-61. EDN: UXEEON.

13. Fedotov E.S., Starodub M.V., Kuznetsov V.A. Causes of damage to the brake discs (Part 2). Fundamental’nye osnovy mekhaniki. 2021;7:39-44. (In Russ.). https://doi.org/10.26160/2542-0127-2021-7-39-44. EDN: OGBFYP.

14. Fedotov E.S., Litvinov A.E., Starodub M.V. Causes of damage to brake pads of disc-shoe brakes. Transport, mining and construction engineering: science and production. 2020;9:18-23. (In Russ.). https://doi.org/10.26160/2658-3305-2020-9-18-23. EDN: FDKDVA.

15. Koshevoy O.S., Mamulyan N.S., Radchenko A.S. Triz – technology innovation. Models, systems, networks in economics, technology, nature, and society. 2013;1:65-67. (In Russ.). EDN: RPZDBN.

16. Kolosko D.N., Khaustovich I.S., Shcherbachenya V.A. Application of the Mises criterion in strength calculations of engineering analysis systems. In: Aktual’nye problemy i perspektivy razvitiya sel’skih terri-torij i kadrovogo obespecheniya APK: sbornik nauchnyh statej III Mezhdunarodnoj nauchno-prakticheskoj konferencii = Actual problems and development prospects of rural areas and personnel provision of agro-industrial complex: collected scientific articles of the 3d International scientific and practical conference. 7–8 June 2023, Minsk. Minsk: Belarussian State Agrarian Technical University; 2023, р. 324-328. (In Russ.).

17. Gubenko A.S., Tempel Yu.A., Starikov A.I., Teploukhov O.Yu. Optimization of strength and mass characteristics of a part using generic design algorithms. In: Proceedings of Tula State University. Technical Science. 2023;7:358-362. (In Russ.). https://doi.org/10.24412/2071-6168-2023-7-358-359.

18. Krasikova E.S. 3D model designing for product manufacturing using investment casting. In: Vysokie tekhnologii v mashinostroenii: materialy XX Vserossijskoj nauch-no-tekhnicheskoj konferencii s mezhdunarodnym uchastiem = High technologies in mechanical engineering: Proceedings of 20th All-Russian scientific and technical conference with international participation. 9–10 November 2023, Samara. Samara: Samara State Technical University; 2023, р. 31-34. (In Russ.). EDN: ISRYKI.

19. Shilov A.V. Method for removing a burnt-out polymer model from a ceramic mold in investment casting. Patent RF, no. 2772531; 2022. (In Russ.). EDN: MOSJRS.

20. Evstigneev A.I., Dmitriev E.A., Odinokov V.I., Chernyshova D.V., Evstigneeva А.А., Ivankova E.P. On the crack resistance of a ceramic shell mold according to the smelted models when a spherical steel casting solidifies in IT. Foundry. Technologies and Equipment. 2022;9:17-21. (In Russ.). EDN: BSLLOC.

21. Tkachenko S.S., Emelyanov V.O., Martynov K.V. Modern technology of investment casting for the production of artistic castings. Foundry Production and Metallurgy. 2021;1:49-52. (In Russ.). https://doi.org/10.21122/1683-6065-2021-1-49-52. EDN: KETJWM.

22. Sakovich N.Ye., Nikitin A.M., Shilin A.S., Rozhnova V.S., Prudnikov S.A. Disc-pad brakes of motor vehicles. Bulletin of the Bryansk State Agrarian University. 2021;6:55-60. (In Russ). https://doi.org/10.52691/2500-2651-2021-88-6-55-60. EDN: FZPNKF.


Review

For citations:


Sklyarenko E.F., Shevtsov Yu.D. Development of a modular brake disc assembly for spot-type disc brake systems with enhanced performance characteristics. iPolytech Journal. 2025;29(2):216-233. (In Russ.) https://doi.org/10.21285/1814-3520-2025-2-216-233. EDN: NUIVAY

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)