Preview

iPolytech Journal

Advanced search

Influence of reversible smoothing parameters on the stiffness indicator of the stress state scheme

https://doi.org/10.21285/1814-3520-2025-2-170-183

EDN: GLGGYX

Abstract

The aim of this work is to determine the influence of reversible smoothing parameters on the stiffness index of the stress state scheme and to identify rational parameters for the strengthening process. The research was carried out using the software SOLIDWORKS 2019 (for 3D design) and the finite element method based on the computer program ANSYS Workbench 19.1 (for construction of the mathematical model). In order to obtain the optimal value of the stiffness index for the stress state scheme of parts reinforced by reversible smoothing, the Microsoft Visual Studio 2012 computer program was used, with programming in Python to identify rational parameters for reversible smoothing. The influence of the main technological parameters of reversible smoothing on the formation of the maximum residual stress intensity and the stiffness index of the residual stress scheme in strengthened parts was determined. On the basis of the statistical analysis of the obtained data, rational strengthening modes have been established, which ensure the formation of the maximum possible stiffness index of the stress state scheme in the deformation zone: the longitudinal feed rate in the range of 0.07–0.08 mm/rev; the rotation frequency of the blank in the range of 280–300 rpm; the radial stress value in the range of 0.25–0.28 mm; the initial setting angle of the working tool at 90º; the amplitude of the reversible rotation angle of the working tool in the range of ±55º–±60º; and the reversible rotation frequency of the working tool in the range of 270–300 double pass per min. The rational reinforcement modes obtained by reversible smoothing make it possible to achieve the maximum possible high rigidity of the stress scheme, resulting in improved mechanical properties of the machined parts. Future research could be directed towards refining the mathematical models describing the reversible smoothing process and carrying out experimental work to identify the optimum machining modes for different materials.

About the Authors

Huu Hai Nguyen
Air Force Officer College
Viet Nam

Huu Hai Nguyen, Cand. Sci. (Eng.), Lecturer

3 Biet Thu St., Nha Trang 57163



S. A. Zaides
Irkutsk National Research Technical University
Russian Federation

Semen A. Zaides, Dr. Sci. (Eng.), Professor, Professor of the Department of Materials Science, Welding and Additive Technologies

83, Lermontov St., Irkutsk 664074



References

1. Kislenko A.S., Khramtsov R.O. Changing the technical condition of the vehicle during operation. Nauchnyj Al’manah. 2020;2-2:48-53. (In Russ.). EDN: WKQAOC.

2. Mar’ina N.L., Ovchinnikova E.V. Studying the failure mode of the crank mechanism of a high-powered diesel engine. Sovremennye materialy, tekhnika i tekhnologii. 2015;3:154-161. (In Russ.). EDN: VEJBBX.

3. Chibuhchyan S.S., Chibuhchyan O.S., Chibuhchyan G.S. Improving mechanical properties of thin-walled parts of vehicles and mining machines. Problemy mashinostroeniya i nadezhnosti mashin. 2024;2:27-33. (In Russ.). https://doi.org/10.31857/S0235711924020043. EDN: QWIHDQ.

4. Notin I.A., Kiselev I.A., Sinavchian S.N. Machining impact upon fatigue strength of engineering parts made of dispersion-strengthened composites. Science intensive Technologies in Mechanical Engineering. 2019;6:12-16. (In Russ.). https://doi.org/10.30987/article_5ce675a169dde6.03417198. EDN: UVAIRO.

5. Ovchinnikov V.V., Sbitnev A.G., Polyakov D.A. Influence of cast core sizes on properties of point joints of aluminum alloys. Technology of Metals. 2023;10:20-27. (In Russ.). https://doi.org/10.31044/1684-2499-2023-0-10-20-27. EDN: GXCHOI.

6. Muratkin G.V., Sarafanova V.A. Straightening of shafts by surface plastic deformation with elastic flexure of the workpiece. Russian Engineering Research. 2020;5:62-66. (In Russ.). https://doi.org/10.36652/0042-4633-2020-5-62-66. EDN: XOFABQ.

7. Ding Kai Jian. Methodology for choosing an optimal technique for surface plastic forming. Interactive Science. 2023;7:52-54. (In Russ.). https://doi.org/10.21661/r-560324. EDN: PAOSTN.

8. Savel’ev A.V., Bobrovskii N.M. Dry machining of machine parts: surface plastic deformation. Russian Engineering Research. 2024;44(2):250-253. https://doi.org/10.3103/s1068798x24020230.

9. Gvozdev A.E., Kuzovleva O.V. Extreme effects of strength and ductility in metallic heterophase ingot and powder systems and composite materials. Tula: Tula State University; 2020, 498 р. EDN: USTZWB.

10. Kirichek A.V., Barinov S.V., Kukanova N.A. Evaluation of the influence of plastic deformation on the corrosion resistance of steels. Russian Engineering Research. 2024;103(10):853-858. (In Russ.). https://doi.org/10.36652/0042-4633-2024-103-10-853-858. EDN: GUJTNK.

11. Bukatyi A.S., Bukatyi S.A. Strength calculation of parts based on stress state stiffness. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2022;21(1):34-41. (In Russ.). https://doi.org/10.18287/2541-7533-2022-21-1-34-41.

12. Grushko O.V. Stress state parameter taking into account material properties and its effect on plasticity. Vestnik nacional’nogo tekhnicheskogo universiteta Ukrainy “Kievskij politekhnicheskij institute”. Seriya: Mashinostroenie. 2012;64:220-226. (In Russ.).

13. Mitrofanova K.S. The effect of surface plastic deformation by a multiradius roller on the structural phase state and microhardness of steel 45 samples. Bulletin of the Kuzbass State Technical University. 2022;3:4-12. (In Russ.). https://doi.org/10.26730/1999-4125-2022-3-4-12. EDN: ZCGGKB.

14. Zaides S.A., Nguen Hyu Haj. The method of surface plastic deformation of the outer surfaces of solids of revolution. Patent RF, no. 2758713; 2021. (In Russ.).

15. Zaides S.A., Nguen Hyu Haj. The influence of the main parameters of the reversible surface plastic deformation on the stress-strain state of cylindrical parts. Systems. Methods. Technologies. 2022;3:7-15. (In Russ.). https://doi.org/10.18324/2077-5415-2022-3-7-15. EDN: WLQLFZ.

16. Zaides S.A., Nguen Hyu Haj. Influence of reversible surface plastic deformation on changes in the grain structure of carbon steel. Chernye metally. 2023;6:61-70. (In Russ.). https://doi.org/10.17580/chm.2023.06.09. EDN: CJOCDE.

17. Saurabh A., Joshi K., Verma P.C. Load-dependent finite element wear simulation of semi-metallic and ceramic friction materials using ANSYS. Transactions of the Indian Institute of Metals. 2023;76:2473-2482. https://doi.org/10.1007/s12666-023-02917-1.

18. Birosz M.T., Andó M., Jeganmohan S. Finite element method modeling of additive manufactured compressor wheel. Journal of The Institution of Engineers (India): Series D. 2021;102:79-85. https://doi.org/10.1007/s40033-021-00251-8.

19. Yu Wen Yan, Qiang Lei. Finite element analysis of finishing mill roll based on ANSYS. Applied Mechanics and Materials. 2013;321-324:226-229. https://doi.org/10.4028/www.scientific.net/AMM.321-324.226.

20. Pham D.Ph. Stressedly-deformed state of cylindrical parts at transverse rolling by flat tool. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2015;1(2):8-17. (In Russ.). EDN: VNUJSX.

21. Sivak R.I., Sivak I.O. Metal plasticity under complex loading. Vestnik nacional’nogo tekhnicheskogo universiteta Ukrainy “Kievskij politekhnicheskij institute”. Seriya: Mashinostroenie. 2010;60:129-132. (In Russ.). EDN: VAXVQN.

22. Bukatyj A.S., Bukatyj S.A., Surkov O.S., Saraev A.S. Optimization of aircraft part design based on stress state stiffness criterion. In: Materialy pula nauchno-prakticheskih konferencij = Proceedings of the pool of scientific and practical conferences. 23–27 January 2023, Sochi. Kerch’: Kerch State Maritime Technological University; 2023, р. 319-321. (In Russ.). EDN: ROADZE.

23. Mitrofanov Yu.P., Goncharova E.V., Zhou H., Wilde G., Khonik V.A. Relaxation of the shear modulus in metallic glass pd40ni40p20 after plastic deformation by torsion under pressure. In: Relaksacionnye yavleniya v tverdyh telah: materialy XXIV Mezhdunarodnoj konferencii = Relaxation phenomena in solids: proceedings of the 24th International conference. 24–27 September 2019, Voronezh. Voronezh: Voronezh State Technical University; 2019, р. 40-41. (In Russ.). EDN: JKTVOS.

24. Tamarkin M.A., Tishchenko E.E., Shvedova A.S. Increase in the life cycle of products when processing parts by dynamic methods of surface plastic deformation. Automation. Modern technologies. 2018;72(9):403-408. (In Russ.). EDN: RYUJBN.


Review

For citations:


Nguyen H., Zaides S.A. Influence of reversible smoothing parameters on the stiffness indicator of the stress state scheme. iPolytech Journal. 2025;29(2):170-183. (In Russ.) https://doi.org/10.21285/1814-3520-2025-2-170-183. EDN: GLGGYX

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)