Preview

iPolytech Journal

Advanced search

MARKOV CHAIN-BASED STUDY OF INFORMATION RISKS OF ELECTROLYZER SAFE OPERATION

https://doi.org/10.21285/1814-3520-2018-5-83-96

Abstract

The PURPOSE of the paper is to develop a diagnostic model of the electrolysis process in order to organize its safe operation based on a fuzzy Markov chain for assessing the level of information risks. METHODS. The methods used in the research include mathematical modeling and simulation modeling. RESULTS. The fuzzy Markov chain has been examined in order to evaluate the state of the aluminum electrolysis process. Graph nodes corresponding to the system states are characterized by the risk indicators. The latter can be determined as the degree of the fuzzy congruence between the desired and real indicators of system operation. CONCLUSION. The proposed approach can be used to predict the system failure rate for a particular implementation of the information system hardware setup. This will allow to construct a system design technology taking into account the modeling results when formulating requirements for software and hardware resources and finally will enable to select the hardware resources.

About the Authors

A. B. Diallo
Tver State Technical University
Russian Federation


D. T. Dim
Tver State Technical University
Russian Federation


S. R. Bakasov
Tver State Technical University
Russian Federation


A. E. Prorokov
Novomoskovsk Institute of Mendeleev Russian Chemical and Technological University
Russian Federation


V. N. Bogatikov
Tver State Technical University
Russian Federation


References

1. Палюх Б.В., Богатиков В.Н., Пророков А.Е., Алексеев В.В. Приложение метода разделения состояний для управления технологической безопасностью промышленных процессов на основе нечетко определенных моделей: монография. Тверь: Изд-во ТГТУ, 2009. 368 с.

2. Matveev Y.N., Palyukh B.V., Stukalova N.A., Bogatikov V.N. Mathematical model of process of management of elimination of consequences of emergency and emergency situations on technogenic chemical and technological objects // International Journal of Applied Engineering Research. 2015. Vol. 10. No. 24. P. 45717-457.

3. Пискажова Т.В. Методы эффективного управления технологическим процессом электролитического получения алюминия // Вестник Сибирского федерального университета. Техника и технологии. 2010. Т. 3. № 2. С. 159-170.

4. Мелихов А.Н., Бернштейн Л.С., Коровин С.Я. Ситуационные советующие системы с нечеткой логикой. М.: Наука, 1990. 272 с.

5. Поспелов Д.А. Ситуационное управление: теория и практика. М.: Наука, 1986. 288 с.

6. Вентцель Е.С. Исследование операций. М.: Советское радио, 1972. 551 с.

7. Zhang L., Xu X., Tao L. Some Similarity Measures for Triangular Fuzzy Number and Their Applications in Multiple Criteria Group Decision-Making // Journal of Applied Mathematics. 2013. P. 1-7.

8. Lind N.C. Vulnerability of damage-accumulating systems // Reliability Engineering & System Safety. 1996. Vol. 53. No. 2. P. 217-219.

9. Maes M.A., Fritzsons K.E., Glowienka S. Risk-based indicators of structural system robustness. JCSS and IABSE. Workshop on Robustness of Structures. 2005.

10. Pal A., Mondal B., Bhattacharyya N., Raha S. Similarity in fuzzy systems // Journal of Uncertainty Analysis and Applications. 2014. Vol. 18. https://doi.org/10.1186/s40467-014-0018-0

11. Пантелей В.Г., Шубинский И.Б. Расчетные методы оценки надежности приборов. М.: Машиностроение, 1974. 56 с.


Review

For citations:


Diallo A.B., Dim D.T., Bakasov S.R., Prorokov A.E., Bogatikov V.N. MARKOV CHAIN-BASED STUDY OF INFORMATION RISKS OF ELECTROLYZER SAFE OPERATION. Proceedings of Irkutsk State Technical University. 2018;22(5):83-96. (In Russ.) https://doi.org/10.21285/1814-3520-2018-5-83-96

Views: 189


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)