Hydrothermal interaction of sphalerite with copper sulfate solutions in the presence of sodium lignosulfonate
https://doi.org/10.21285/1814-3520-2025-1-133-147
Abstract
The present paper aims to study the efficiency of using sodium lignosulfonate surfactant for hydrothermal treatment of zinc sulfide with copper sulfate solutions. The solutions were analyzed by the optical emission spectral method; an ARL ADVANT’X wave X-ray fluorescence spectrometer was used to study cakes. MS Excel, OriginPro, and Statgraphics software packages were used for data processing. Particle size was determined using a Bettersize ST laser diffraction particle size analyzer. We have studied the effect of sodium lignosulfonate on the hydrothermal extraction of zinc from sphalerite. The addition of this surfactant enhances the precipitation of copper on the sphalerite surface, thus increasing the degree of zinc extraction into the solution. Effects of temperature (180–220°C) and concentration of lignosulfonate (0–1 g/dm3), sulfuric acid (10–30 g/dm3), and copper (6–24 g/dm3) has been studied; optimal conditions for the maximum zinc extraction of 55–71% into the pregnant solution and copper cake precipitation of 45–83% were identified. Elevated temperatures increase the reaction rate and solubility of metals. Changes in the concentrations of sulfuric acid and copper affect the equilibrium of reactions and the efficiency of copper precipitation and zinc extraction into the solution. The performed experiments have resulted in the optimal parameters of hydrothermal treatment: 0.25 g/dm³ lignosulfonate concentration, 220°C temperature, 10 g/dm³ sulfuric acid concentration, and 15 g/dm³ initial copper concentration. For these parameters, 74% of zinc is extracted into the solution in 120 min and 83% of copper is deposited on the cake. Thus, the effect of sodium lignosulfonate on the hydrothermal treatment of sphalerite can be stated as positive: the concentration of this additive below 0.25 g/dm³ accelerates sphalerite treatment by 1.5–2 times.
About the Authors
U. R. SharipovaRussian Federation
Uliana R. Sharipova, Research Engineer, Scientific Laboratory of Advanced Technologies for Complex Processing of Mineral and Technogenic Raw Materials of Non-Ferrous and Ferrous Metals
19, Mira St., Ekaterinburg 620002
M. A. Tretiak
Russian Federation
Maksim A. Tretiak, Cand. Sci. (Eng.), Junior Researcher, Scientific Laboratory of Advanced Technologies for Complex Processing of Mineral and Technogenic Raw Materials of Non-Ferrous and Ferrous Metals
19, Mira St., Ekaterinburg 620002
K. A. Karimov
Russian Federation
Kirill A. Karimov, Cand. Sci. (Eng.), Senior Researcher, Scientific Laboratory of Advanced Technologies for Complex Processing of Mineral and Technogenic Raw Materials of Non-Ferrous and Ferrous Metals
19, Mira St., Ekaterinburg 620002
D. A. Rogozhnikov
Russian Federation
Denis A. Rogozhnikov, Dr.Sci. (Eng.), Associate Professor, Head of the Laboratory, Scientific Laboratory of Advanced Technologies for Complex Processing of Mineral and Technogenic Raw Materials of Non-Ferrous and Ferrous Metals
19, Mira St., Ekaterinburg 620002
References
1. Shumskaya E.N., Poperechnikova O.Yu., Tikhonov N.O. Development of technology of concentration of complex pyrite polymetallic ore of Korbalikhinskoe deposit. Gornyi Zhurnal. 2014;11:78-83. (In Russ.). http://doi.org/10.17580/gzh.2016.11.08. EDN: SZEWFP.
2. Abishev D., Eremin Yu. Concentration of finely disseminated ores as a priority direction of the mining and metallurgical complex. Industry of Kazakhstan. 2000;10:96-99. (In Russ.).
3. Chanturiya V.A. Innovative technologies for complex and deep processing of mineral raw materials with complex material composition. In: Innovacionnye processy kompleksnoj pererabotki prirodnogo i tekhnogennogo mineral’nogo syr’ya (Plaksinskie chteniya) = Innovative processes of complex processing of natural and technogenic mineral raw materials (Plaksin readings): Proceedings of the International Conference 21–26 September 2020, Apatity. Apatity: Kola Science Centre of the Russian Academy of Sciences; 2020, р. 3-4. (In Russ.). EDN: MABCBV.
4. Orlov A.K., Konovalov G.V., Bоduen A.J. Pyrometallurgical selection of copper-zinc materials. Journal of Mining Institute. 2011;192:65-68. (In Russ.). http://doi.org/10.21285/1814-3520-2020-2-421-433. EDN: ROWETD.
5. Bulatov K.V., Zhukov V.P. Technological capabilities for metallurgical processing of industrial products in polymetallic ore preparation and copper smelting slag depletion in the Pobeda smelting unit. Proceedings of Irkutsk State Technical University. 2020;24(2):421-433. (In Russ.). https://doi.org/10.21285/1814-3520-2020-2-421-433. EDN: OUSGWL.
6. Shneerson Ya.M., Naboichenko S.S. Tendencies of non-ferrous metals autoclave hydrometallurgy development. Tsvetnye metally. 2011;3:15-20. (In Russ.). EDN: NFAQJB.
7. Lapin A.Yu., Shneerson Ya.M. Creation and development history of autoclave-hydrometallurgical technology for processing nickel-pyrrhotite concentrates. Tsvetnye metally. 2020;9:57-64. (In Russ.). EDN: QAWUXI.
8. Kochin V.A., Naboichenko S.S., Lebed A.B., Maltcev G.I. Pressure leaching–flotation method processing Cu – Pb – Zn concentrates. Modern problems of science and education. 2013;2:196. (In Russ.). EDN: RXUOZP.
9. Kritskii A., Karimov K., Naboichenko S. Pressure leaching of chalcopyrite concentrate: iron removal from leaching residues. Solid State Phenomena. 2020;299:1052-1057. http://doi.org/10.4028/www.scientific.net/SSP.299.1052. EDN: TRLLKB.
10. Kritskii A.A., Naboichenko S.S., Karimov K.A., Vivek A., Lundström M. Hydrothermal pretreatment of chalcopyrite concentrate with copper sulfate solution. Hydrometallurgy. 2020;195:105478. http://doi.org/10.1016/j.hydromet.2020.105359. EDN: JBCCPP.
11. Kritskii A., Celep O., Yazici E., Deveci H., Naboichenko S. Hydrothermal treatment of sphalerite and pyrite particles with CuSO4 solution. Minerals Engineering. 2022;180:107507. http://doi.org/10.1016/j.mineng.2022.107507.
12. Kritskii A., Fuentes G., Deveci H. A critical review of hydrothermal treatment of sulfide minerals with Cu(II) solution in H2SO4 media. Hydrometallurgy. 2024;231:106413. http://doi.org/10.1016/j.hydromet.2024.106413.
13. Fomenko I.V., Pleshkov M.A., Shneerson Y.M., Ospanov E.A., Shakalov A.A., Naboichenko S.S. Low-grade copper concentrate purification and enrichment by complex pressure oxidation-hydrothermal alteration technology. In: 10th Conference proceedings of COM + COPPER. 18–21 August 2019, Vancouver. Montreal: Canadian Institute of Mining, Metallurgy and Petroleum; 2019, 13 p. Available from: https://www.researchgate.net/publication/347949233_LOW-GRADE_COPPER_CONCENTRATE_PURIFICATION_AND_ENRICHMENT_BY_COMPLEX_PRESSURE_OXIDATION_-HYDROTHERMAL_ALTERATION_TECHNOLOGY [Accessed 28th September 2024].
14. Kovyazin A.A., Timofeev K.L., Maltsev G.I., Krayukhin S.A. Hydrothermal precipitation of copper from leaching solutions of metallurgical dusts. iPolytech Journal. 2024;28(2):547-561. (In Russ.). https://doi.org/10.21285/1814-3520-2024-3-547-561. EDN: UYMDXG.
15. Kritskii A., Naboichenko S. Hydrothermal treatment of arsenopyrite particles with CuSO4 Solution. Materials. 2021;14(23):7472. http://doi.org/10.3390/MA14237472. EDN: ORSDOU.
16. Viñals J., Fuentes G., Hernández M.C., Herreros O. Transformation of sphalerite particles into copper sulfide particles by hydrothermal treatment with Cu(II) ions. Hydrometallurgy. 2004;75(1-4):177-187. http://doi.org/10.1016/j.hydromet.2004.07.005.
17. Lugovitskaya T.N., Kolmachikhina E.B., Nabojchenko S.S. On surfactant application to intensify high-temperature pressure leaching of sulfide minerals. In: Sovremennye tekhnologii proizvodstva cvetnyh metallov: materialy Mezhdunarodnoj nauchnoj konferencii, posvyashchennoj 80-letiyu S.S. Naboichenko = Modern production technologies of non-ferrous metals: Proceedings of International scientific conference dedicated to the 80th anniversary of S.S. Naboichenko. 24–25 March 2022, Ekaterinburg. Ekaterinburg: Ural Federal University named after the President of Russia B.N. Yeltsin; 2022, р. 59-64. (In Russ.). EDN: UXXVLK.
18. Naftal M.N. Usage of combined surface-active materials is prospective direction for improvement of technology of autoclave-oxidation leaching of nickel-pyrrhotine concentrates. Tsvetnye metally. 2011;10:47-53. (In Russ.). EDN: OIIZQX.
19. Naftal M.N., Vydysh A.V., Sukhobaevsky I.Yu., Belsky A.N., Asanova I.I. Effect of lignosulphonates on behavior of elemental sulphur in the technology of autoclave hydrometallurgy of nickel-pyrrhotite concentrates. Tsvetnye metally. 2009;1:25-33. (In Russ.). EDN: JVXGCG.
20. Khazieva E.B., Sviridov V.V., Naboichenko S.S., Menshchikov V.A. Influence of surface-active substances on sulfur state during the autoclave leaching of zinc concentrates. Tsvetnye metally. 2017;2:46-50. http://doi.org/10.17580/tsm.2017.02.07. (In Russ.). EDN: YGSDNZ.
21. Kolmachikhina E.B., Lugovitskaya T.N., Tretiak M.A., Naumov K.D. Kinetic studies of surfactant influence on zinc sulfide concentrate pressure leaching performance. In: VIII Informatsionnaya shkola molodogo uchenogo: doklady Vserossiiskoi mezhdisciplinarnoi molodezhnoi nauchnoi konferentsii s mezhdunarodnym uchastiem = 8th Information School of Young Scientists: reports of All-Russian interdisciplinary youth scientific conference with international participation. 21–24 September 2020, Ekaterinburg. Ekaterinburg: UMC UPI; 2020, р. 32-41. (In Russ.). http://doi.org/10.32460/ishmu-2020-8-0004. EDN: RGPSRN.
22.
Review
For citations:
Sharipova U.R., Tretiak M.A., Karimov K.A., Rogozhnikov D.A. Hydrothermal interaction of sphalerite with copper sulfate solutions in the presence of sodium lignosulfonate. iPolytech Journal. 2025;29(1):133-147. (In Russ.) https://doi.org/10.21285/1814-3520-2025-1-133-147