Preview

iPolytech Journal

Advanced search

I-V curves for detecting faults of operating photovoltaic modules

https://doi.org/10.21285/1814-3520-2025-1-82-95

Abstract

The present paper focuses on I-V curves for localizing possible defects in a photovoltaic module. The study considers the response of a photovoltaic module to changes in external and internal factors of the urban environment in Chelyabinsk, Russian Federation. To carry out measurements and control the module condition, we use the IV Swinger 2 software package reading data from the module to plot I-V curves and determine the maximum power point in real time. Changes in the internal parameters of the module are simulated by connecting additional resistances of different values to the external terminals of the experimental module. The conducted research has demonstrated additional resistance changing the shape of the I-V curve of the photovoltaic module regardless the type of connection and electrical circuit section of the module. This resistance simulates the main faults according to the given classification. Additional resistance in the cell circuit makes the shunt diode a conductor in the range of values from 0.71 to 1.06 Ohm. If additional resistance is installed between modules, the resistance can increase in a wide range of values without the diode transition to the conducting state. Additional resistance can reduce the power generation of a photovoltaic module. Therefore, we have assessed the impact of different cell shading levels on the module power generation. Given the resulting shunt resistance for all cells of one module, the slope of the I-V curve is inversely proportional to resistance due to the increased current leakage. Thus, the data of the I-V curve and the slope angle near the maximum power points is appropriate to identify and analyze the emerging faults of the photovoltaic module by evaluating its resistance.

About the Authors

I. M. Kirpichnikova
South Ural State University
Russian Federation

Irina M. Kirpichnikova, Dr. Sci. (Eng.), Professor, Professor of the Department of Power Plants, Networks and Power Supply Systems

76, Lenin pr., Chelyabinsk 454080



V. A. Zavarukhin
South Ural State University
Russian Federation

Vladimir A. Zavarukhin, Postgraduate Student

76, Lenin pr., Chelyabinsk 454080



V. A. Serov
South Ural State University
Russian Federation

Viktor A. Serov, Postgraduate Student

76, Lenin pr., Chelyabinsk 454080



References

1. Kirpichnikova I.M., Zavarukhin V.A., Sletova E.D. Selection of V-I characteristics for finding solar module degradation causes. Energy Safety and Energy Economy. 2024;3:15-21. (In Russ.). EDN: SMFSKD.

2. Da Silva M.K., Gul M.S., Chaudhry H. Review on the sources of power loss in monofacial and bifacial photovoltaic technologies. Energies. 2021;14(23):7935. https://doi.org/10.3390/en14237935.

3. Kirpichnikova I.M., Zavarukhin V.A. Degradation of photovoltaic modules. Types, causes, diagnostic methods of modules. Energosberezhenie i vodopodgotovka. 2021;2:37-42. (In Russ.). EDN: PETZHY.

4. Smith J. Solar panel efficiency over time. Available from: https://blueravensolar.com/blog/a-brief-history-and in depth-look-into-solar-panel-efficiency/ [Accessed 30th September 2024].

5. Jordan D.C., Kurtz S.R. Photovoltaic degradation rates – an analytical review. Progress in Photovoltaics: Research and Applications. 2013;21(1):12-29. https://doi.org/10.1002/pip.1182.

6. Gyamfi S., Aboagye B., Peprah F., Obeng M. Degradation analysis of polycrystalline silicon modules from different manufacturers under the same climatic conditions. Energy Conversion and Management: X. 2023;20:100403. https://doi.org/10.1016/j.ecmx.2023.100403.

7. Pandey S., Kumar S., Mhatre R., Singh T. Analysis of performance degradation of PV modules. Available from: https://www.powermag.com/analysis-of-performance-degradation-of-pv-modules/ [Accessed 30th September 2024].

8. Libra M., Mrázek D., Tyukhov I., Severová L., Poulek V., Mach J. et al. Reduced real lifetime of PV panels – economic consequences. Solar Energy. 2023;259:229-234. https://doi.org/10.1016/j.solener. 2023.04.063.

9. Kirpichnikova I.M., Makhsumov I.B., Shestakova V.V. Reduced power generation efficiency of solar panels in dusty locations. iPolytech Journal. 2023;27(1):83-93. (In Russ.). https://doi.org/10.21285/1814-3520-2023-1-83-93. EDN: URBKSQ.

10. Satterlee C. IV Swinger 2. Step-by-step construction: Arduino shield PCB designs. Available from: https://cdn.instructables.com/ORIG/F2T/I6P6/JS0OS2H3/F2TI6P6JS0OS2H3.pdf [Accessed 30th September 2024].

11. Ma Mingyao, Zhang Zhixiang, Xie Zhen, Yun Ping, Zhang Xing, Li Fei. Fault diagnosis of cracks in crystalline silicon photovoltaic modules through I-V curve. Microelectronics Reliability. 2020;114(6):113848. https://doi.org/10.1016/j.microrel.2020.113848.

12. Dhimish M., Holmes V., Mehrdadi B., Dales M. The impact of cracks on photovoltaic power performance. Journal of Science: Advanced Materials and Devices. 2017;2(2):199-209. https://doi.org/10.1016/j.jsamd.2017.05.005.

13. Shvets S.V., Baishev A.V. Bypass diode function in solar panels and their diagnostic methods. Proceedings of Irkutsk State Technical University. 2019;23(6):1187-1202. (In Russ.). https://doi.org/10.21285/1814-3520-2019-6-1187-1202. EDN: RZXZEQ.

14. Deng Shifeng, Zhang Zhen, Ju Chenhui, Dong Jingbing, Xia Zhengyue, Yan Xinchun, et al. Research on hot spot risk for high-efficiency solar module. Energy Procedia. 2017;130:77-86. https://doi.org/10.1016/j.egypro.2017.09.399.

15. Wang Ao, Xuan Yimin. Close examination of localized hot spots within photovoltaic modules. Energy Conversion and Management. 2021;234:113959. https://doi.org/10.1016/j.enconman.2021.113959.

16. Naumann V., Lausch D., Hähnel A., Breitenstein O., Hagendorf C. Nanoscopic studies of 2D-extended defects in silicon that cause shunting of Si-solar cells. Current topics in solid state physics. 2015;20(8):1103-1107. https://doi.org/10.1002/pssc.201400225.

17. Gaevskaya A. Approximation algorithm for current-voltage characteristics of PV modules under shading conditions. Vidnovluvana energetika. 2019;3:21-29. https://doi.org/10.36296/1819-8058.2019.3(58).21-29.

18. Honsberg C., Bowden S. Shunt resistance. Available from: https://www.pveducation.org/pvcdrom/solar-celloperation/shunt-resistance [Accessed 30th September 2024].

19. Swanson R., Cudzinovic M., DeCeuster D., Desai V., Jürgens J., Kaminaret N., et al. The surface polarization effect in high-efficiency silicon solar cells. In: Proceedings of the 15th International Photovoltaic Science & Engineering Conference. 11–13 October 2005, Shanghai. Shanghai; 2005, р. 410-413.

20. Luo Wei, Khoo Yong Sheng, Hacke Peter, Naumann Volker, Lausch Dominik, Harvey S.P., et al. Potentialinduced degradation in photovoltaic modules: a critical review. Energy & Environmental Science. 2017;10(1):43-68. https://doi.org/10.1039/C6EE02271E.


Review

For citations:


Kirpichnikova I.M., Zavarukhin V.A., Serov V.A. I-V curves for detecting faults of operating photovoltaic modules. iPolytech Journal. 2025;29(1):82-95. (In Russ.) https://doi.org/10.21285/1814-3520-2025-1-82-95

Views: 130


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)