Preview

iPolytech Journal

Advanced search

Development of a technology for setting a high-amperage electrolytic cell for electrical preheating using fusible links

https://doi.org/10.21285/1814-3520-2024-4-635-646

EDN: BPMVPW

Abstract

The paper aims to develop and test a design procedure for setting an electrolytic cell for electrical preheating without current interruption in a series of electrolysis units using aluminum fusible links. For the analysis of a complex electrical circuit, the circuit conversion technique, a direct application of Kirchhoff’s circuit laws, was used. The obtained patterns were identified and determined using graphical and analytical methods. Mathematical modeling was performed by means of approved programs. A design procedure was developed for setting an electrolytic cell for electrical preheating without current interruption in the series of electrolysis units. The computations (mathematical modeling) were performed for two startup variants: without current load interruption in the series of electrolysis units and with the lowering of current load in the series (to 250 kA). Pilot startup tests of two high-amperage electrolytic cells were performed without current interruption in the series of electrolysis units, i.e., at an operating current of 330 kA, as well as the startup of one electrolytic cell with the current load lowered to 250 kA. The study results indicate that the developed method allows a high-amperage electrolytic cell to be set for electrical preheating with the use of fusible links without interrupting the current load or with its lowering in the series of electrolysis units. Successful pilot tests of three high-amperage electrolytic cells operating at a current strength of 330 kA provide a means to extrapolate this preheating method to other high-amperage electrolytic cells operating at current strengths of 400 and 550 kA.

About the Author

E. Yu. Radionov
RUSAL Engineering and Technology Center LLC
Russian Federation

Evgeniy Yu. Radionov, Cand. Sci. (Eng.), Deputy Director of the Department for Busbar and Measurement Development

37/1, Pogranichnikov St., Krasnoyarsk 660111



References

1. Grjotheim K., Kvande H. Introduction to aluminium electrolysis. Düsseldorf: Aluminium-Verlag; 1993, 260 p.

2. Dudin M.N., Voykova N.A., Frolova E.E., Artemieva J.A., Rusakova E.P., Abashidze A.H. Modern trends and challenges of development of global aluminum industry. Metalurgija. 2017;56(1-2):255-258.

3. Blais M., Désilets M., Lacroix M. Energy savings in aluminum electrolysis cells: effect of the cathode design. In: Sadler В.А. (eds.). The Minerals, Metals & Materials Series. Сham: Springer; 2013, p. 627-631. https://doi.org/10.1002/9781118663189.ch107.

4. Loginova I.V. Investigation into the question of complex processing of bauxites of the Srednetimanskoe deposit. Journal of Non-Ferrous Metals. 2013;54(2):143-147. https://doi.org/10.3103/S1067821213020089. EDN: RFAJAX.

5. Shoppert A., Valeev D., Loginova I. Novel method of bauxite treatment using electroreductive Bayer process. Metals. 2023;13(9):1502. https://doi.org/10.3390/met13091502.

6. Dubovikov O.A., Brichkin V.N., Ris A.D., Sundurov A.V. Thermochemical activation of hydrated aluminosilicates and its importance for alumina production. Non-ferrous Metals. 2018;2:11-16. https://doi.org/10.17580/nfm.2018.02.02. EDN: VAYILV.

7. Aleksandrov A.V., Aleksandrov V.V. Improving the quality of alumina-containing sinter using water-cooled furnace shell. Science of Sintering. 2012;44(3):281-286. https://doi.org/10.2298/SOS1203281A.

8. Zenkin E.Yu., Gavrilenko A.A., Nemchinova N.V. On RUSAL Bratsk JSC primary aluminum production waste recycling. Proceedings of Irkutsk State Technical University. 2017;21(3):123-132. (In Russ.). https://doi.org/10.21285/1814-3520-2017-3-123-132.

9. Storozhev Yu.I., Polyakov P.V., Dekterev Ar.A., Kazantsev Ya.V. To the question of cleaning anodic gases of the cell with the Soderberg’s anodе. Ecology and Industry of Russia. 2019;23(11):15-19. (In Russ.). https://doi.org/10.18412/1816-0395-2019-11-15-19. EDN: OXKBKT.

10. Zhao Xia, Ma Lei. Hazardous waste treatment for spent pot liner. In: Earth and Environmental Science: IOP Conference Series. 2018;108(4):042023. https://doi.org/1088/1755-1315/108/4/042023.

11. Burdonov A.E., Zelinskaya E.V., Gavrilenko L.V., Gavrilenko A.A. Investigation of substantial composition of alumina-bearing material of aluminium electrolysers for usage in primary aluminium technology. Tsvetnye metally. 2018;3:32-38. (In Russ.). https://doi.org/10.17580/tsm.2018.03.05. EDN: YUCHKI.

12. Nemchinova N.V., Barauskas A.E., Tyutrin A.A., Vologin V.S. Processing finely dispersed technogenic raw materials for aluminum production in order to extract valuable components. Russian Journal of Non-Ferrous Metals. 2021;62(6):659-667. https://doi.org/10.3103/S1067821221060158. EDN: RHWKMQ.

13. Petrovskiy A.A., Nemchinova N.V., Tyutrin A.A., Korepina N.A. Use of leaching cake from refractory lining of dismantled electrolysers in cement production. iPolytech Journal. 2022;26(4):697-708. (In Russ.). https://doi.org/10.21285/1814-3520-2022-4-697-708. EDN: EGMMXU.

14. Puzanov I.I., Volokhov I.N., Bykov R.Yu., Muravyev S.A. Launch of RA-400 at Taishet aluminium smelter. In: Tsvetnye metally i mineraly – 2024: sbornik tezisov dokladov XII Mezhdunarodnogo кongressa = Non-ferrous metals and minerals: book of abstracts. 9–13 September 2024, Krasnoyarsk. Krasnoyarsk; 2024, р. 213-215.

15. Puzanov I., Zavadyak A., Tretiyakov Y., Morozov M., Gubin A., Platonov V., et al. Electrical resistance preheating of high-amperage cells. Engineering & Technologies. 2014;7(5):552-560.

16. Mann V., Buzunov V., Pingin V., Zherdev A., Grigoriev V. Environmental aspects of UC RUSAL’S aluminum smelters sustainable development. In: Chesonis С. (eds.). Light Metals. Сham: Springer; 2019, p. 553-563. https://doi.org/10.1007/978-3-030-05864-7_70. EDN: SIHUYY.

17. Mann V., Buzunov V., Pitertsev N., Chesnyak V., Polyakov P. Reduction in power consumption at UC RUSAL’s Smelters 2012-2014. In: Hyland M. (eds.). Light Metals. Сham: Springer; 2015, р. 757-762. https://doi.org/10.1007/978-3-319-48248-4_128. EDN: VADMNZ.

18. Semyaninov D.M., Koshkarev S.A. Successful implementation of a project on increasing amperage by 17 kA up to 330 kA on OA-300 pots at a RUSAL smelter. In: Tsvetnye metally i mineraly – 2024: sbornik tezisov dokladov XII Mezhdunarodnogo кongressa = Non-ferrous metals and minerals: book of abstracts. 9–13 September 2024, Krasnoyarsk. Krasnoyarsk; 2024, р. 251-253.

19. Polyakov P.V. Life of an aluminum electrolyzer as a dissipative system. Krasnoyarsk: Siberian Federal University; 2018, 190 р. (In Russ.).

20. Sørlie M., Øye H.A. Cathodes in aluminium electrolysis, 2013, 720 р. (Russ. ed.: Katody alyuminievogo elektrolizera. Krasnoyarsk: Verso; 2013, 720 р.) 2

21. Radionov E.Yu. Calculation of magnetohydrodynamic electrolyser parameters with various types of cathode shell. Proceedings of Irkutsk State Technical University. 2020;24(3):684-693. (In Russ.). https://doi.org/10.21285/1814-3520-2020-3-684-693. EDN: LRHDLJ.

22. Bojarevics V. MHD of aluminium cells with the effect of channels and cathode perturbation elements. In: В.А. Sadler. (eds.). The Minerals, Metals & Materials Series. Сham: Springer; 2013, р. 609-614. https://doi.org/10.1002/9781118663189.ch104.

23. Radionov E.Yu., Nemchinova N.V., Tretiakov Ya.A. Magnetohydrodynamic processes modeling in electrolyzers at primary aluminum production. Proceedings of Irkutsk State Technical University. 2015;7:112-120. (In Russ.). EDN: UBLOMB.


Review

For citations:


Radionov E.Yu. Development of a technology for setting a high-amperage electrolytic cell for electrical preheating using fusible links. iPolytech Journal. 2024;28(4):634-646. (In Russ.) https://doi.org/10.21285/1814-3520-2024-4-635-646. EDN: BPMVPW

Views: 108


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)