Preview

iPolytech Journal

Advanced search

DEVELOPMENT OF METHODOLOGY DETERMINING GAS DYNAMIC CHARACTERISTICS OF COAL MINE VENTILATION BASED ON ADDITIVE AIR-GAS DYNAMIC PROCESSES

https://doi.org/10.21285/1814-3520-2018-5-65-74

Abstract

The PURPOSE of the paper is development of a modified methodology of correlation analysis which will allow to obtain accurate enough estimation of the static characteristic coefficients of aerodynamic processes in coal mines. METHODS. The methods used in the study include analytical description of transient gas dynamic processes, the method of transition functions, the moving average method, the probability theory and mathematical statistics. RESULTS. Complexity of the air-gas dynamic processes in the production site, impossibility to account for all the factors affecting them and their stochastic nature determined the need to use the methods of mathematical description and the methods based on the theory of statistical dynamics to specify the characteristics of the above processes. A modified procedure of the correlation analysis has been developed in order to identify the static characteristics based on the experimental data of dependent observations in the normal operation mode. It allowed to obtain sufficiently accurate estimates of the coefficients of static characteristic. Using the software package MATLAB the dependence of the methane concentration on the air flow rate has been obtained. It has been found that under normal operation the air-gas dynamic processes are of an additive character, i.e. production processes of excavating minerals cause the appearance of the components whose statistical characteristics differ from those of purely random processes. It has been experimentally determined that the linearized dynamic characteristics of mining sites in the ventilation mode when the transient gas-dynamic process takes the form of a methane concentration “burst” can be described by ordinary differential equations of the 3- 4 order with constant coefficients while being in the ventilation mode when there is no “burst” of methane concentration on the site - can be described by the equations of the 1-2 order. CONCLUSIONS. The static characteristic of the object of ventilation is determined by the channel “methane concentration - air flow rate”. It can be linearized when the air flow changes in the operating range, i.e. described by linear equations. The type of the static characteristic of the object of ventilation is determined using the comparison of the correlation and dispersion functions. This method enables to obtain a quantitative estimate of the error of the object static characteristic based on the data of facility normal operation.

About the Author

I. I. Bosikov
North-Caucasian Mining and Metallurgical Institute (State Technological University)
Russian Federation


References

1. Арсеньев Б.П., Яковлев С.А. Интеграция распределенных баз данных. СПб: Лань, 2001. 464 с.

2. Абрамов Ф.А., Тян Р.Б., Потемкин В.Я. Расчет вентиляционных сетей шахт и рудников. М.: Недра, 1978. 232 с.

3. Босиков И.И., Берко И.А., Берко А.А. Определение передаточной функции объекта проветривания по переходному газодинамическому процессу // Наука и бизнес: пути развития. 2016. № 12 (66). С. 12-14.

4. Босиков И.И., Харебов Г.З., Хугаев Р.Р. Разработка методов и средств контроля параметров рудничной атмосферы природно-промышленной системы горнодобывающего комплекса // Наука и бизнес: пути развития. 2016. № 9 (63). С. 5-7.

5. Босиков И.И., Хугаев Р.Р. Анализ технической системы по критерию точности // Наука и бизнес: пути развития. 2016. № 12 (66). С. 15-18.

6. Васенин И.М., Шрагер Э.Р., Крайнов А.Ю., Палеев Д.Ю., Лукашов О.Ю., Костеренко В.Н. Математическое моделирование нестационарных процессов вентиляции сети выработок угольной шахты // Компьютерные исследования и моделирование. 2011. Т. 3. № 2. С. 155-163.

7. Голик В.И., Разоренов Ю.И. Охрана труда горнорабочих совершенствованием технологии добычи металлов // Безопасность труда в промышленности. 2017. № 8. С. 49-54. DOI: https://doi.org/10.24000/0409-2961-2017-8-49-54

8. Голик В.И., Заалишвили В.Б. Оптимизация схем подготовки месторождений наклонными съездами // Известия Тульского государственного университета. Науки о Земле. 2017. № 1. С. 52-67.

9. Дырдин В.В., Фофанов А.А., Ким Т.Л., Смирнов В.Г., Тациенко В.П., Козлов А.А., Плотников Е.А. Влияние механодеструкции угля на формирование газодинамических процессов при подземной разработке угольных пластов // Безопасность труда в промышленности. 2017. № 8. С 10-15.

10. Рубан А.Д. Артемьев В.Б., Забурдяев В.С., Забурдяев Г.С., Руденко Ю.Ф. Проблемы обеспечения высокой производительности очистных забоев в метанообильных шахтах. М.: Недра, 2009. 396 с.

11. Пучков Л.А. Аэродинамика подземных выработанных пространств. М.: Изд-во МГГУ, 1993. 266 с.

12. Бурчаков А.С., Медведев А.С., Ушаков К.3. Рудничная аэрология. 2-е изд. М.: Недра, 1978. 440 с.

13. Youn R.B., Klyuev R.V., Bosikov I.I., Dzeranov B.V. The petroleum potential estimation of the North Caucasus and kazakhstan territories with the help of the structural-geodynamic prerequisites // Устойчивое развитие горных территорий. 2017. Т. 9. № 2 (32). С. 172-178.

14. Benardos A., Athanasiadis I., Katsoulakos N. Modern earth sheltered constructions: a paradigm of green engineering // Tunnelling and Underground Space Technology. 2014. Vol. 41. P. 46-52.

15. Wang G., Li R., Carranza E. J. M., Yang F. 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China // Ore Geology Reviews. 2015. Vol. 71. P. 592-610.


Review

For citations:


Bosikov I.I. DEVELOPMENT OF METHODOLOGY DETERMINING GAS DYNAMIC CHARACTERISTICS OF COAL MINE VENTILATION BASED ON ADDITIVE AIR-GAS DYNAMIC PROCESSES. Proceedings of Irkutsk State Technical University. 2018;22(5):65-74. (In Russ.) https://doi.org/10.21285/1814-3520-2018-5-65-74

Views: 197


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)