Зелёные энергетические системы для электромобилей с учётом телекоммуникационной системы на примере Пакистана
https://doi.org/10.21285/1814-3520-2024-4-534-549
EDN: GGTPIU
Аннотация
Цель – анализ устойчивости и эффективности телекоммуникационного сектора Пакистана путем разработки структуры для базовых приемопередающих станций, объединяющих возобновляемые источники энергии и зарядные станции. В качестве объекта исследований рассматривались различные возобновляемые источники энергии, такие как солнце, ветер, биомасса и гидроэнергия. В работе реализованы следующие методологические этапы: анализ местности; определение оптимальных размеров установок, систем накопителей энергии и станций зарядки электромобилей; методы анализа затрат и выгод; оценка выбросов парниковых газов; методы проектирования системы для интеграции выбранных возобновляемых источников энергии и решений по хранению энергии с учетом эксплуатационных требований базовых приемопередающих станций. Установлено, что переход на гибридные системы возобновляемой энергии может значительно снизить зависимость от дизельных генераторов. Показано, что эксплуатационные расходы могут быть снижены более чем на 80% по сравнению с традиционными системами, работающими на дизельном топливе. Также внедрение гибридных возобновляемых источников энергии может привести к значительному сокращению выбросов CO2. Показано, что интеграция систем хранения аккумуляторов повышает надежность энергоснабжения, обеспечивая бесперебойную работу в периоды высокого спроса и отключения электроэнергии. Предложенная схема структуры для базовых приемопередающих станций разработана с учетом будущего роста доли электротранспорта и технологических достижений в области возобновляемых источников энергии и зарядки электромобилей. Отдавая предпочтение интеграции возобновляемых технологий наряду с инфраструктурой зарядных станций, поставщики телекоммуникационных услуг в Пакистане могут сократить углеродный след и эксплуатационные расходы. Такой подход не только решает проблемы, связанные с непредсказуемостью электросетей, особенно в сельских регионах, но и позиционирует телекоммуникационный сектор как активного участника глобальных усилий по борьбе с изменением климата.
Об авторах
М. Билал АлиПакистан
Билал Али Мухаммед, к.м.н., научный сотрудник Американо-Пакистанского центра перспективных исследований в области энергетики
44000, г. Исламабад
С. А. Аббас Казми
Пакистан
Аббас Казми Сайед Али, доцент Американо-Пакистанского центра перспективных исследований в области энергетики
44000, г. Исламабад
Список литературы
1. Abdulmula A.M.O., Sopian K.B., Kazlizan А., Lim Chin Haw. Performance evaluation of standalone double axis solar tracking system with maximum light detection MLD for telecommunication towers in Malaysia. International Journal of Power Electronics and Drive Systems. 2019;10(1):444-453. https://doi.org/10.11591/ijpeds.v10n1.pp444-453.
2. Amutha W.M., Andrew Н.C., Shajie A.D., Paulraj J.P.I. Renewable power interface based rural telecom. International Journal of Power Electronics and Drive System. 2019.10(2):917-927. https://doi.org/10.11591/ijpeds.v10.i2.pp917-927.
3. Oviroh P.O., Jen Tien-Chien. The energy cost analysis of hybrid systems and diesel generators in powering selected base transceiver station locations in Nigeria. Energies. 2018;11(3):687. https://doi.org/10.3390/en11030687.
4. Zebra E.I.C., Windt H.J., Nhumaio G., Faaij A.P.C. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews. 2021;144:111036. https://doi.org/10.1016/j.rser.2021.111036.
5. Semaoui S., Arab A.H., Bacha S., Azoui B. The new strategy of energy management for a photovoltaic system without extra intended for remote-housing. Solar energy. 2013;94:71-85. https://doi.org/10.1016/j.solener.2013.04.029.
6. Robitaille M., Agbossou K., Doumbia M.L. Modeling of an islanding protection method for a hybrid renewable distributed generator. In: Canadian Conference on Electrical and Computer Engineering. 2005. https://doi.org/10.1109/CCECE.2005.1557259.
7. Sahoo U., Kumar R., Singh S.K., Tripathi A.K. Energy, exergy, economic analysis and optimization of polygeneration hybrid solar-biomass system. Applied Thermal Engineering. 2018;145:685-692. https://doi.org/10.1016/j.applthermaleng.2018.09.093.
8. Koohi-Kamali S., Rahim N.A. Coordinated control of smart microgrid during and after islanding operation to prevent under frequency load shedding using energy storage system. Energy conversion and management. 2016;127:623- 646. https://doi.org/10.1016/j.enconman.2016.09.052.
9. Raveendhra D., Poojitha R., Narasimharaju B.L., Domyshev A., Dreglea A., Dao Minh Hien, et al. Part II: Stateof-the-art technologies of solar-powered DC microgrid with hybrid energy storage systems: converter topologies. Energies. 2023;16(17):6194. https://doi.org/10.3390/en16176194.
10. Shezan S.A., Ishraque M.F., Muyeen S.M., Arifuzzaman S.M., Paul L.C., Das S.K., et al. Effective dispatch strategies assortment according to the effect of the operation for an islanded hybrid microgrid. Energy Conversion and Management: X. 2022;14:100192. https://doi.org/10.1016/j.ecmx.2022.100192.
11. Kuetche C.F.M., Tsuanyo D., Fopah-Lele A. Analysis of hybrid energy systems for telecommunications equipment: a case study in Buea Cameroon. In: Renewable Energy and digital technologies for the development of Africa: E3S Web of Conferences. 2022;354:02007. https://doi.org/10.1051/e3sconf/202235402007.
12. Naderipour A., Ramtin A.R., Abdullah A., Marzbali M.H., Nowdeh S.A., Kamyab H. Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis. Energy. 2022;239(D):122303. https://doi.org/10.1016/j.energy.2021.122303.
13. Kushwaha P.K., Bhattacharjee C. Integrated techno-economic-enviro-socio design of the hybrid renewable energy system with suitable dispatch strategy for domestic and telecommunication load across India. Journal of Energy Storage. 2022;55(А):105340. https://doi.org/10.1016/j.est.2022.105340.
14. Okundamiya M.S., Wara S.T., Obakhena H.I. Optimization and techno-economic analysis of a mixed power system for sustainable operation of cellular sites in 5G era. International Journal of Hydrogen Energy. 2022;47(39):17351- 17366. https://doi.org/10.1016/j.ijhydene.2022.03.207.
15. Memon S.A., Upadhyay D.S., Patel R.N. Optimal configuration of solar and wind-based hybrid renewable energy system with and without energy storage including environmental and social criteria: а case study. Journal of Energy Storage. 2021;44:103446. https://doi.org/10.1016/j.est.2021.103446.
16. Khan F.A., Pal N., Saeed S.H. Optimization and sizing of SPV/wind hybrid renewable energy system: a techno-economic and social perspective. Energy. 2021;233:121114. https://doi.org/10.1016/j.energy.2021.121114.
17. Ali F., Ahmar M., Jiang Yuexiang, AlAhmad M. A techno-economic assessment of hybrid energy systems in rural Pakistan. Energy. 2021;215(А):119103. https://doi.org/10.1016/j.energy.2020.119103.
18. Das B.K., Alotaibi M.A., Das P., Islam M.S., Das S.K., Hossain M.A. Feasibility and techno-economic analysis of stand-alone and grid-connected PV/wind/diesel/batt hybrid energy system: а case study. Energy Strategy Reviews. 2021;37:100673. https://doi.org/10.1016/j.esr.2021.100673.
19. Kumar A., Verma A. Optimal techno-economic sizing of a solar-biomass-battery hybrid system for off-setting dependency on diesel generators for microgrid facilities. Journal of Energy Storage. 2021;36:102251. https://doi.org/10.1016/j.est.2021.102251.
20. Amara S., Toumi S., Salah C.B., Saidi A.S. Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system. Energy. 2021;233:121166. https://doi.org/10.1016/j.energy.2021.121166.
21. Alshammari N., Asumadu J. Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms. Sustainable Cities and Society. 2020;60:102255. https://doi.org/10.1016/j.scs.2020.102255.
22. Diab A.A.Z., Sultan H.M., Kuznetsov O.N. Optimal sizing of hybrid solar/wind/hydroelectric pumped storage energy system in Egypt based on different meta-heuristic techniques. Environmental Science and Pollution Research. 2020;27(26):32318-32340. https://doi.org/10.1007/s11356-019-06566-0.
23. Ramesh M., Saini R.P. Dispatch strategies based performance analysis of a hybrid renewable energy system for a remote rural area in India. Journal of Cleaner Production. 2020;259:120697. https://doi.org/10.1016/j.jclepro.2020.120697.
24. Li Chong, Zhou Dequn, Wang Hui, Lu Yuzheng, Li Dongdong. Techno-economic performance study of standalone wind/diesel/battery hybrid system with different battery technologies in the cold region of China. Energy. 2020;192:116702. https://doi.org/10.1016/j.energy.2019.116702.
25. Veilleux G., Potisat T., Pezim D., Ribback С. Techno-economic analysis of microgrid projects for rural electrification: а systematic approach to the redesign of Koh Jik off-grid case study. Energy for Sustainable Development. 2020;54:1-13. https://doi.org/10.1016/j.esd.2019.09.007.
26. Aziz A.S., Tajuddin M.F.N., Adzman M.R., Mohammed M.F., Ramli M.A.M. Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: а case study of Iraq. Energy. 2020;191:116591. https://doi.org/10.1016/j.energy.2019.116591.
27. Mayer M.J., Szilágyi A., Gróf G. Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Applied Energy. 2020;269:115058. https://doi.org/10.1016/j.apenergy.2020.115058.
28. Odou O.D.T., Bhandari R., Adamou R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renewable Energy. 2020;145:1266-1279. https://doi.org/10.1016/j.renene.2019.06.032.
29. Kumar J., Suryakiran B.V., Verma A., Bhatti T.S. Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India. Energy. 2019;178:176-185. https://doi.org/10.1016/j.energy.2019.04.105.
30. Kim Min-Hwi, Kim Deukwon, Heo Jaehyeok, Lee Dong-Won. Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community. Energy. 2019;187:115916. https://doi.org/10.1016/j.energy.2019.115916.
31. Baseer M., Alqahtani A., Rehman S. Techno-economic design and evaluation of hybrid energy systems for residential communities: сase study of Jubail industrial city. Journal of Cleaner Production. 2019;237:117806. https:// doi.org/10.1016/j.jclepro.2019.117806.
32. Javed M.S., Song Aotian, Ma Tao. Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm. Energy. 2019;176:704-717. https://doi.org/10.1016/j.energy.2019.03.131.
33. Sawle Y., Gupta S.С., Bohre A.K. Socio-techno-economic design of hybrid renewable energy system using optimization techniques. Renewable Energy. 2018;119:459-472. https://doi.org/10.1016/j.renene.2017.11.058.
34. Ahmad J., Imran M., Khalid A., Iqbal W., Ashraf S.R., Adnan M., et al. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: а case study of Kallar Kahar. Energy. 2018;148:208-234. https://doi.org/10.1016/j.energy.2018.01.133.
35. Duman A.C., Güler Ö. Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities and Society. 2018;42:107-126. https://doi.org/10.1016/j.scs.2018.06.029.
36. Alharthi, Ya.Z., Siddiki M.K., Chaudhry G.M. Resource assessment and techno-economic analysis of a grid-connected solar PV-wind hybrid system for different locations in Saudi Arabia. Sustainability. 2018;10(10):3690. https://doi.org/10.3390/su10103690.
37. Das B.K., Zaman F. Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection. Energy. 2019;169:263-276. https://doi.org/10.1016/j.energy.2018.12.014.
38. Kumar A., Singh A.R., Deng Yan, He Xiangning, Kumar Praveen, Bansal R.C. A novel methodological framework for the design of sustainable rural microgrid for developing nations. Ieee Access. 2018;6:24925-24951. https://doi.org/10.1109/ACCESS.2018.2832460.
39. Park E. Potentiality of renewable resources: economic feasibility perspectives in South Korea. Renewable and Sustainable Energy Reviews. 2017;79:61-70. https://doi.org/10.1016/j.rser.2017.05.043.
40. Yilmaz S., Dincer F. Optimal design of hybrid PV-diesel-battery systems for isolated lands: а case study for Kilis, Turkey. Renewable and Sustainable Energy Reviews. 2017;77:344-352. https://doi.org/10.1016/j.rser.2017.04.037.
41. Al-Sharafi A., Sahin A.Z., Ayar T., Yilbas B.S. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and Sustainable Energy Reviews. 2017;69:33-49. https://doi.org/10.1016/j.rser.2016.11.157.
42. Shahzad M.K., Zahid A., Rashid T.U., Rehan M.A., Ali M., Ahmad M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable Energy. 2017;106:264-273. https://doi.org/10.1016/j.renene.2017.01.033.
43. Jaiswal A. Lithium-ion battery based renewable energy solution for off-grid electricity: a techno-economic analysis. Renewable and Sustainable Energy Reviews. 2017;72:922-934. https://doi.org/10.1016/j.rser.2017.01.049.
44. Azimoh C.L., Klintenberg P., Mbohwa C., Wallin F. Replicability and scalability of mini-grid solution to rural electrification programs in sub-Saharan Africa. Renewable Energy. 2017;106:222-231. https://doi.org/10.1016/j.renene.2017.01.017.
45. Das H.S., Tan Chee Wei, Yatim A.H.M., Lau Kwan Yiew. Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renewable and Sustainable Energy Reviews. 2017;76:1332-1347. https://doi.org/10.1016/j.rser.2017.01.174.
46. Vides-Prado A., Camargo E.O., Vides-Prado C., Orozco I.H., Chenlo F., Candelo J.E. Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renewable and Sustainable Energy Reviews. 2018;82(3):4245-4255. https://doi.org/10.1016/j.rser.2017.05.101.
47. Ajlan A., Tan Chee Wei, Abdilahi A.M. Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen. Renewable and Sustainable Energy Reviews. 2017;75:559-570. https://doi.org/10.1016/j.rser.2016.11.024.
48. Halabi L.M., Mekhilef S., Olitomiwa L. Performance analysis of hybrid PV/diesel/battery system using HOMER: а case study Sabah, Malaysia. Energy conversion and management. 2017;144:322-339. https://doi.org/10.1016/j.enconman.2017.04.070.
49. Qolipour M., Mostafaeipour A., Tousi O.M. Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: а case study. Renewable and sustainable energy reviews. 2017;78(С):113-123. https://doi.org/10.1016/j.rser.2017.04.088.
50. Becerra M., Morán J., Cepeda F., Valenzuela M. Wind energy potential in Chile: assessment of a small scale wind farm for residential clients. Energy Conversion and Management. 2017;140:71-90. https://doi.org/10.1016/j.enconman.2017.02.062.
51. Eltamaly A.M., Mohamed M.A., Al-Saud M.S., Alolah A.I. Load management as a smart grid concept for sizing and designing of hybrid renewable energy systems. Engineering Optimization. 2017;49(10):1813-1828. https://doi.org/10.1080/0305215X.2016.1261246.
52. Mohamed M.A., Eltamaly A.M., Alolah A.I. Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems. Renewable and Sustainable Energy Reviews. 2017;77:515-524. https://doi.org/10.1016/j.rser.2017.04.048.
53. Ansari M.S., Jalil M.F., Bansal R. A review of optimization techniques for hybrid renewable energy systems. International Journal of Modelling and Simulation. 2023;43(5):722-735. https://doi.org/10.1080/02286203.2022.2119524.
54. Bansal A.K. Sizing and forecasting techniques in photovoltaic-wind based hybrid renewable energy system: а review. Journal of Cleaner Production. 2022;369:133376. https://doi.org/10.1016/j.jclepro.2022.133376.
55. Kumar P., Pal N., Sharma H. Optimization and techno-economic analysis of a solar photo-voltaic/biomass/ diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India. Energy. 2022;247:123560. https://doi.org/10.1016/j.energy.2022.123560.
56. Healy M.L., Dahlben L.J., Isaacs J.A. Environmental assessment of single‐walled carbon nanotube processes. Journal of Industrial Ecology. 2008;12(3):376-393. https://doi.org/10.1111/j.1530-9290.2008.00058.x.
57. Tsoutsos T., Frantzeskaki N., Gekas V. Environmental impacts from the solar energy technologies. Energy policy. 2005;33(3):289-296. https://doi.org/10.1016/S0301-4215(03)00241-6.
58. Nazir M.S., Mahdi A.J., Bilal M., Sohail H.M., Ali N., Iqbal H.M.N. Environmental impact and pollution-related challenges of renewable wind energy paradigm – a review. Science of the Total Environment. 2019;683:436-444. https://doi.org/10.1016/j.scitotenv.2019.05.274.
59. Nazir M.S., Ali N., Bilal M., Iqbal H. Potential environmental impacts of wind energy development: а global perspective. Current Opinion in Environmental Science & Health. 2020;13:85-90. https://doi.org/10.1016/j.coesh.2020.01.002.
60. Fearnside P.M. Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: Implications for the aluminum industry. World development. 2016;77:48-65. https://doi.org/10.1016/j.worlddev.2015.08.015.
61. Henning H.-M., Palzer A. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part I: Methodology. Renewable and Sustainable Energy Reviews. 2014;30:1003-1018. https://doi.org/10.1016/J.RSER.2013.09.012.
62. McPherson M., Karney B. A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model. Energy. 2017;138:185- 196. https://doi.org/10.1016/j.energy.2017.07.027.
63. Esteban M., Portugal-Pereira J. Post-disaster resilience of a 100% renewable energy system in Japan. Energy. 2014;68:756-764. https://doi.org/10.1016/j.energy.2014.02.045.
64. Esen H., Inalli M., Esen M. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Building and environment. 2007;42(5):1955-1965. https://doi.org/10.1016/j.buildenv.2006.04.007.
65. Esen M., Yuksel T. Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy and Buildings. 2013;65:340-351. https://doi.org/10.1016/j.enbuild.2013.06.018.
66. Ajan C.W., Ahmed S.S., Ahmad H.B., Taha F., Zin A.A.B.M. On the policy of photovoltaic and diesel generation mix for an off-grid site: East Malaysian perspectives. Solar Energy. 2003;74(6):453-467. https://doi.org/10.1016/S0038-092X(03)00228-7.
67. Hosseinalizadeh R., Shakouri G.H., Amalnick M.S., Taghipour P. Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: сase study of Iran. Renewable and Sustainable Energy Reviews. 2016;54:139-150. https://doi.org/10.1016/j.rser.2015.09.046.
68. Gulagi A., Choudhary P., Bogdanov D., Breyer C. Electricity system based on 100% renewable energy for India and SAARC. PLoS One. 2017;12(7):e0180611. https://doi.org/10.1371/journal.pone.0180611.
69. Maleki A., Hafeznia H., Rosen M.A., Pourfayaz F. Optimization of a grid-connected hybrid solar-wind-hydrogen CHP system for residential applications by efficient metaheuristic approaches. Applied Thermal Engineering. 2017;123:1263-1277. https://doi.org/10.1016/j.applthermaleng.2017.05.100.
70. Mason I.G., Page S.С., Williamson A.G. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources. Energy policy. 2010;38(8):3973-3984. https://doi.org/10.1016/j.enpol.2010.03.022.
71. Ridha H.M., Gomes C., Hazim H., Ahmadipour M. Sizing and implementing off-grid stand-alone photovoltaic/battery systems based on multi-objective optimization and techno-economic (MADE) analysis. Energy. 2020;207:118163. https://doi.org/10.1016/j.energy.2020.118163.
72. Kaabeche A., Diaf S., Ibtiouen R. Firefly-inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria. Solar Energy. 2017;155:727-738. https://doi.org/10.1016/j.solener.2017.06.070.
73. Guezgouz M., Jurasz J., Bekkouche B., Ma Tao, Javed M.S., Kies A. Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Conversion and Management. 2019;199:112046. https://doi.org/10.1016/j.enconman.2019.112046.
74. Elliston B., Diesendorf M., MacGill I. Simulations of scenarios with 100% renewable electricity in the Australian National electricity market. Energy Policy. 2012;45:606-613. https://doi.org/10.1016/j.enpol.2012.03.011.
75. Østergaard P.A. Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations. Applied Energy. 2015;154:921-933. https://doi.org/10.1016/j.apenergy.2015.05.086.
Рецензия
Для цитирования:
Билал Али М., Аббас Казми С.А. Зелёные энергетические системы для электромобилей с учётом телекоммуникационной системы на примере Пакистана. iPolytech Journal. 2024;28(4):534-549. https://doi.org/10.21285/1814-3520-2024-4-534-549. EDN: GGTPIU
For citation:
Bilal Ali M., Abbas Kazmi S.A. Green energy systems for powering electric vehicles considering telecommunication system with case study of Pakistan. iPolytech Journal. 2024;28(4):534-549. https://doi.org/10.21285/1814-3520-2024-4-534-549. EDN: GGTPIU