Multi-channel adaptive median signal filter
https://doi.org/10.21285/1814-3520-2024-4-504-520
EDN: ZAWNJJ
Abstract
This study aims to develop a novel structure of an N-channel adaptive median signal filter with dynamic input exclusion. The proposed design is intended for highly reliable, fault-tolerant modular redundant power supply systems for spacecraft. To investigate the functionality of the proposed N-channel filter, we developed a simulation model for a 7-channel median signal filter using MATLAB Simulink. A model-based design approach was applied to validate the performance of the proposed element using the Altera Cyclone IV EP4CE115F29C7 field-programmable gate array (FPGA). The verification process involved the use of automatic code generation tools within MATLAB Simulink for the FPGA implementation. A novel structure of the N-channel median signal filter was proposed, featuring a dynamic exclusion of unused inputs from the median calculation. This guarantees that only valid input signals from operational modules within the power supply system be included in the median calculation. The simulation results demonstrated that, in contrast to existing counterparts, the proposed filter is capable of reliably outputting the median signal as the number of active input signals decreases from N to 1. The implementation of the filter as an intellectual property (IP) block based on the Altera Cyclone IV EP4CE115F29C7 FPGA demonstrated efficient resource utilisation, occupying 541 logic cells, while fully adhering to the specified operational logic. The proposed structure of the adaptive median signal filter can be employed in highly reliable, fault-tolerant spacecraft redundant power supply systems, maintaining functionality even in the event of multiple module failures, down to the last operational module. The developed solution meets the stringent fault-tolerance requirements of spacecraft power systems.
About the Authors
K. A. AkhtyrskiyRussian Federation
Kirill A. Akhtyrskiy, Postgraduate
40, prospect Lenina, Tomsk 634050
V. A. Kabirov
Russian Federation
Vagiz A. Kabirov, Cand. Sci. (Eng.), Assistant of the Department of Electric Power and Electrical Engineering
30, prospect Lenina, Tomsk 634050
V. D. Semenov
Russian Federation
Valeriy D. Semenov, Cand. Sci. (Eng.), Senior Researcher, Professor of the Department of Industrial Electronics
40, prospect Lenina, Tomsk 634050
D. S. Torgaeva
Russian Federation
Darya S. Torgaeva, Cand. Sci. (Eng.), Lead Software Engineer
51, prospect Kirova, Tomsk 634041
References
1. Andreev D.V. Rank selector. Patent RF, no. 2248041; 2005. (In Russ.).
2. Marcuccio S., Ullo S., Carminati M., Kanoun O. Smaller satellites, larger constellations: trends and design issues for earth observation systems. IEEE Aerospace and Electronic Systems Magazine. 2019;34(10):50-59. https://doi.org/10.1109/MAES.2019.2928612.
3. Roberts T.G., Kaplan S. Space launch to low earth orbit: how much does it cost. Data repository, Center for Strategic and International Studies. 2022. Available from: https://aerospace.csis.org/data/space-launch-to-lowearth-orbit-how-much-does-it-cost/ [Accessed 29th September 2024].
4. McDowell J.C. The low earth orbit satellite population and impacts of the SpaceX Starlink constellation. The Astrophysical Journal Letters. 2020;892(2):L36. https://doi.org/10.3847/2041-8213/ab8016.
5. Henri Y. The OneWeb satellite system. In: Handbook of Small Satellites. Cham: Springer; 2020, р. 1091-1100. https://doi.org/10.1007/978-3-030-20707-6_67-1.
6. Osoro O.B., Oughton E.J., Wilson A.R., Rao A. Sustainability assessment of low earth orbit (LEO) satellite broadband mega-constellations. 2023. https://doi.org/10.21203/rs.3.rs-3325730/v1.
7. Shaengchart Yа., Kraiwanit T. The SpaceX Starlink satellite project: business strategies and perspectives. Corporate & Business Strategy Review. 2024;5(1):30-37. https://doi.org/10.22495/cbsrv5i1art3.
8. Zhu Hong-yu, Bo-wen Zhang, Donglai Zhang. Overview of architectures for satellite’s regulated bus power system. In: IEEE 1st China International Youth Conference on Electrical Engineering. 2020. https://doi.org/10.1109/CIYCEE49808.2020.9332665.
9. Apasov V.I. Unified system power module of small spacecraft. Reshetnevskie chteniya. 2016;1:322-324. (In Russ.). EDN: XEAFDJ.
10. Antuna А.L., Arias M., Miaja P.F., Villarejo J.A., Oliveira T.H., Fernández A. Modular converters analysis and design for the standardization of the power bus in satellites. In: 13th European Space Power Conference. 2023. https://doi.org/10.1109/ESPC59009.2023.10298162.
11. Apasov V.I. Study of unified power unit based on combined voltage converter. Vestnik of SibGAU. 2016;17(4):916- 922. (In Russ.).
12. Manoj K.M.B., Padmavathi K. Design and implementation of low power multi-output flyback converter for nanosatellite applications. In: First International Conference on Advances in Electrical, Electronics and Computational Intelligence. 2023. https://doi.org/10.1109/ICAEECI58247.2023.10370982.
13. Soubrier L., Trehet E. High power PCU for alphabus: PSR100V. In: 9th European Space Power Conference. 2011;690.
14. Oskirko V.O., Sochugov N.S., Pavlov A.P. A modular bipolar power supply for high-power ion-plasma installations. Pribory i tekhnika eksperimenta. 2014;5:85. (In Russ.). https://doi.org/10.7868/S0032816214050127. EDN: SKIAPX.
15. Kabirov V.A., Semenov V.D., Torgaeva D.S., Otto A.I. Miniaturization of spacecraft electrical power systems with solar-hydrogen power supply system. International Journal of Hydrogen Energy. 2023;48(24):9057-9070. https://doi.org/10.1016/j.ijhydene.2022.12.087.
16. Konstantinou G., Pou J., Ceballos S., Agelidis V.G. Active redundant submodule configuration in modular multilevel converters. IEEE transactions on power delivery. 2013;28(4):2333-2341. https://doi.org/10.1109/TPWRD.2013.2264950.
17. Andreev D.V. Median identifier. Patent RF, no. 2204164; 2003. (In Russ.).
18. Andreev D.V. Rank filter. Patent RF, no. 2172516; 2001. (In Russ.).
19. Kabirov V.A., Ahtyrskij K.A., Semenov V.D., Torgaeva D.S. Multichannel element for selecting one of the input signals. Patent RF, no. 2804599; 2003. (In Russ.).
20. Mudhivarthi B.R., Saini V., Dodia A., Shah P., Sekhar R. Model based design in automotive open system architecture. In: 7th International Conference on Intelligent Computing and Control Systems. 17–19 May 2023, Madurai. Madurai: IEEE; 2023, p. 1211–1216. https://doi.org/10.1109/ICICCS56967.2023.10142603.
21. Elsayed G., Kayed S.I. A comparative study between MATLAB HDL Coder and VHDL for FPGAs design and implementation. Journal of International Society for Science and Engineering. 2022;4(4):92-98. https://doi.org/10.21608/jisse.2022.136645.1056.
22. Pereira L.F.S.C, Batista E.A., Pinto J.O.P., Upadhyaya B.R., Hines J.W., Coble J.B. Model predictive control for sodium fast reactors based on Laguerre functions and FPGA-in-the-loop environment. Nuclear Engineering and Design. 2022;400:112041. https://doi.org/10.1016/j.nucengdes.2022.112041.
Review
For citations:
Akhtyrskiy K.A., Kabirov V.A., Semenov V.D., Torgaeva D.S. Multi-channel adaptive median signal filter. iPolytech Journal. 2024;28(4):504-520. (In Russ.) https://doi.org/10.21285/1814-3520-2024-4-504-520. EDN: ZAWNJJ