Structure and dynamic viscosity of CaO–SiO2 and CaO–SiO2–B2O3 model slag systems
https://doi.org/10.21285/1814-3520-2024-3-562-575
EDN: IXGBEL
Abstract
Correlation dependencies between the dynamic viscosity of slag and its structural parameters were studied to determine an optimal basicity of silicon smelting slag under the addition of boron oxide to eliminate slagging of the bottom of ore-smelting furnaces. Experimental studies were conducted on CaO–SiO2 and CaO– SiO2–B2O3 model slags obtained at 1600°С. Raman spectroscopic analysis was carried out using a Horiba JobinYvon HR800UV analyzer (France). Theoretical calculations of slag viscosity were performed using Urbain and Mills models. During the experiments, the key structural parameters of slag systems varied within the following limits: the experimental Raman spectrum deconvolution function from 1.41 to 2.45 and optical basicity from 0.58 to 0.68. The obtained experimental and theoretical data were related by mathematical dependencies. It was found that the dynamic viscosity of slag can be promptly determined by Raman spectroscopy on the basis of mathematical models. The dependence obtained shows that slag viscosity decreases upon an increase in the number of bridging oxygen atoms in the silicate anion structure. Notably, this decrease in slag viscosity is observed up to the value of the experimental Raman spectrum deconvolution function of ~1.55-1.60 or slag optical basicity of 0.60–0.62. When B2O3 is added, the viscosity undergoes a further decrease. In practice, for CaO–SiO2 slag systems, the use of boroncontaining flux as a liquefying agent is reasonable at CaO/SiO2 = 0.61–0.63 while maintaining the content of B2O3 in the slag at a level of 1%. The two models (classical and modified) proposed by Urbain were established to be more suitable for theoretical calculation of viscosity in CaO–SiO2 and CaO–SiO2–B2O3 systems. Mills’ model is not suitable for these purposes, since the correlation coefficients in the corresponding mathematical model are not sufficiently large. Further research in this direction is required in order to establish appropriate dependencies of slag viscosity on its structural parameters at different temperatures.
About the Authors
N. V. NemchinovaRussian Federation
Nina V. Nemchinova - Dr. Sci. (Eng.), Professor, Head of the Department of Non-Ferrous Metals Metallurgy.
83, Lermontov St., Irkutsk 664074
А. A. Ilin
Kazakhstan
Alexander A. Ilin - Researcher.
30, Respubliki pr., Temirtau 101400
А. А. Tyutrin
Russian Federation
Andrey A. Tyutrin - Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Non-Ferrous Metals Metallurgy.
83, Lermontov St., Irkutsk 664074
S. V. Galachieva
Russian Federation
Svetlana V. Galachieva - Dr. Sci. (Econ.), Professor, First Vice-Rector.
44, Nikolaev St., Vladikavkaz 362021
А. А. Yakovleva
Russian Federation
Ariadna A. Yakovleva - Dr. Sci. (Eng.), Professor, Professor of the Department of Chemistry and Biotechnology named after Professor V.V. Tuturina.
83, Lermontov St., Irkutsk 664074
References
1. Rakipov D.F., Bardin N.M., Zhukov V.P. Physicochemical foundations and technology of remelting aluminum scrap and alloys in a molten chloride environment. Ekaterinburg: IzdatNaukaServis; 2009, 194 р. (In Russ.).
2. Popov I., Mitrofanov Y., Ustinov S.M. Feasibility of using aegirine concentrate as a complex flux in copper metallurgy. Metallurgist. 2012;56:64-70. https://doi.org/10.1007/s11015-012-9537-4.
3. Popov D.A., Pentyuhin S.I., Sosnov V.O., Trapeznikov A.V. Fluxes for the production of aluminum alloys. Metallurgiya mashinostroeniya. 2016;5:15-19. (In Russ.). EDN: WMNMYB.
4. Abdeyazdan H., Edris H., Abbasi M.H. The effect of CaF2 сontent in hot metal pretreatment flux based on lime. International Journal of Iron & Steel Society of Iran. 2011;8(2):5-8.
5. Zherebtsov S.N., Chernyshov E.A. Features of the physicochemical properties of fluxes used in electroslag remelting technologies. Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R.E. Alekseeva. 2016;1:228-235. (In Russ.). EDN: VZDVEZ.
6. Kim A.S., Akberdin A.A., Sultangaziev R.B., Orlov A.S., Adamova G.H. Experimental laboratory studies on the development of optimal technological parameters for the smelting of boron-containing silicochrome. Trudy universiteta. Mashinostroenie. Metallurgiya. 2022;4:72-79. (In Russ.). https://doi.org/10.52209/1609-1825_2022_4_72.
7. Zhuchkov V.I., Zayakin O.V., Akberdin A.A. Prospects for using boron in metallurgy. Report 1. Izvestiya. Ferrous Metallurgy. 2021;64(7):471-476. https://doi.org/10.17073/0368-0797-2021-7-471-476. (In Russ.). EDN: AWOXRZ.
8. Gasik M.I., Gasik M.M. Electrothermy of silicon. Dnepropetrovsk: National Metallurgical Academy of Ukraine; 2011, 487 р. (In Russ.).
9. Nemchinova N.V., Tyutrin A.A., Hoang V.V., Zhidkov K.I. Silicon production slags. International Research Journal. 2022;11. (In Russ.). https://doi.org/10.23670/IRJ.2022.125.3. EDN: ZNLKJP.
10. Efimets A.M., Akberdin A.A., Kim A.S. Development and industrial implementation of ferrosilicon production technology in ore-smelting furnaces using boron-containing slag. Trudy universiteta Karagandinskogo gosudarstvennogo tekhnicheskogo universiteta. 1999;5:65-68. (In Russ.).
11. Kim A.S. Smelting ferroalloys by means of borate ores. Stal’. 2008;8:55-58. (In Russ.). EDN: JUWNUZ.
12. Kline J., Tangstad M., Tranell G. A Raman spectroscopic study of the structural modifications associated with the addition of calcium oxide and boron oxide to silica. Metallurgical and Materials Transactions B. 2015;46:62-73. https://doi.org/10.1007/s11663-014-0194-9.
13. Mills K.C. The influence of structure on the physico-chemical properties of slags. ISIJ International. 1993;33(1):148-155. https://doi.org/10.2355/isijinternational.33.148.
14. Mysen B., Richet Р. Melt and glass structure: basic concepts. In: Silicate Glasses and Melts: Рroperties and Structure. Amsterdam: Elsevier; 2005, vol. 10, part 4, р. 101-130. https://doi.org/10.1016/s0921-3198(05)x8001-2.
15. Duffy J.A. A review of optical basicity and its applications to oxidic systems. Geochimica et Cosmochimica Acta. 1993;57(16):3961-3970. https://doi.org/10.1016/0016-7037(93)90346-X.
16. Duffy J.A., Ingram M.D. Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. Journal of American Chemical Society. 1971:93(24):6448-6454. https://doi.org/10.1021/ja00753a019.
17. Urbain G., Cambier F., Deletter M., Anseau M.R. Viscosity of silicate melts. Transactions and Journal of British Ceramics Society. 1981;80(4):139-141.
18. Urbain G. Viscosity estimation of slag. Steel Research. 1987;58(3):111-116. https://doi.org/10.1002/Srin.198701513.
19. Mills K.C., Sridhar S. Viscosities of ironmaking and steelmaking slags. Ironmaking and Steelmaking. 1999;26(4):262-268. https://doi.org/10.1179/030192399677121.
20. Mills K.С. Slag atlas / ed. V.D. Eisenhuttenleute. Dusseldorf: Verlag Sthleisen GmbH; 2008, р. 349-401.
21. Kekkonen M., Oghbasilasie H., Louhenkilpi S. Viscosity models for molten slags. Helsinki: Unigrafia Oy; 2012, 34 р.
22. Rozhihina I.D., Nohrina O.I., Hodosov I.E., Yolkin K.S. Study of the main characteristics of crystalline silicon refining slags. Metallurgiya: tekhnologii, innovacii, kachestvo. Metallurgiya. 2019: trudy XXI Mezhdunarodnoj nauchno-prakticheskoj konferencii = Metallurgy: technologies, innovations, quality. 23–24 November 2019, Novokuznetsk. Novokuznetsk: Siberian State Industrial University; 2019, Part. 1, р. 66-72. (In Russ.).
23. Orlando A., Franceschini F., Muscas C., Pidkova S., Bartoli M., Rovere M., et al. A comprehensive review on Raman spectroscopy applications. Chemosensors. 2021;9(9):262. https://doi.org/10.3390/chemosensors9090262.
24. Kemmer G.C., Keller S. Nonlinear least-squares data fitting in Excel spreadsheets. Nature Protocols. 2010;5(2):267-281. https://doi.org/10.1038/nprot.2009.182.
25. Mysen B.O., Finger L.W., Virgo D., Seifert F.A. Curve-fitting of Raman spectra of silicate glasses. American Mineralogist. 1982;67:686-695.
26. Ferraro J.R., Nakamoto K., Brown C.W. Introductory Raman spectroscopy. Elsevier; 2003, 434 p. https://doi.org/10.1016/B978-0-12-254105-6.X5000-8.
27. McMillan P. A Raman spectroscopic study of glasses in the system CaO–MgO–SiO2. American Mineralogist. 1984;69(7-8):645-659.
28. Ilin A.A., Zobnin N.N., Pikalova I.A., Nemchinova N.V. Distribution of iron and boron between silicon metal smelting products in industrial SAF using borate fluxes. Silicon. 2024;16:3085-3092. https://doi.org/10.1007/S12633-024-02895-z.
Review
For citations:
Nemchinova N.V., Ilin А.A., Tyutrin А.А., Galachieva S.V., Yakovleva А.А. Structure and dynamic viscosity of CaO–SiO2 and CaO–SiO2–B2O3 model slag systems. iPolytech Journal. 2024;28(3):562-575. (In Russ.) https://doi.org/10.21285/1814-3520-2024-3-562-575. EDN: IXGBEL