Preview

iPolytech Journal

Advanced search

Element behavior during autoclave oxidation of polymetallic sulfide flotation concentrate containing tungsten and molybdenum

https://doi.org/10.21285/1814-3520-2024-3-538-546

EDN: LMRIUH

Abstract

In this paper, we investigate the behavior of associated elements (tungsten, molybdenum, and bismuth) contained in a sulfide gold-bearing concentrate during its autoclave oxidation. The process is studied using a sulfide flotation concentrate, crushed to a particle sieve mesh size of minus 0.045 mm and containing 22.1 g/t of gold, 133.2 g/t of silver, 2.7% of tungsten, 13% of molybdenum, and 0.7% of bismuth. The process was carried out in a 2 dm3 autoclave at a temperature of 220ºC and an oxygen partial pressure of 0.7 MPa. The concentrations of sulfuric acid and iron ions in the solution were determined by titrimetric analysis. Inductively coupled plasma atomic emission spectroscopy was used to determine the concentrations of bismuth, tungsten, molybdenum, copper, silver, and arsenic in the solution, as well as the content of bismuth, tungsten, molybdenum, copper, arsenic, lead, and iron and sulfur forms in the cake. The cake was also examined using diffraction analysis. Experiments on cyanidation of oxidized cake were carried out in the pH range of 10.0–10.5 and a NaCN concentration of 1 g/dm3 with a PuroliteS992 ion exchange resin for 24 h. Autoclave oxidation experiments showed the sulfide oxidation degree to be higher than 99%. Extraction of molybdenum into solution in the form of [MoO2(SO4)n]-(2n-2) and MoO 2+ amounted to 95%. The decrease in the solid mass led to an increase in the concentration of bismuth and tungsten in the cake, with their contents reaching 1.66% and 12.7%, respectively. The main phases in the cake were established to be scheelite, anhydrite, plumboyarosite, and bedantite. The extraction of precious metals at the subsequent cyanidation stage amounted to 97.5% of gold and 91.6% of silver. Therefore, autoclave cyanide processing of sulfide gold-containing concentrates leads to a molybdenum extraction in the autoclave oxidation solution at the level of 95%. During cyanidation, more than 90% of gold and silver are extracted. Due to the significant amount of tungsten (17%), bismuth (0.9%), lead (5.3%), and molybdenum (3.3%), the obtained cake cannot be considered a waste product.

About the Authors

A. V. Epiforov
Irkutsk Research Institute of Precious and Rare Metals and Diamonds
Russian Federation

Alexander V. Epiforov - Cand. Sci. (Eng.), Senior Researcher of the Metallurgy Laboratory.

38 Gagarin Blvd, Irkutsk 664025



S. V. Balikov
Irkutsk Research Institute of Precious and Rare Metals and Diamonds
Russian Federation

Stanislav V. Balikov - Dr. Sci. (Eng.), Director of the Business Center, Chief Researcher.

38 Gagarin Blvd, Irkutsk 664025



A. A. Shipnigov
Irkutsk Research Institute of Precious and Rare Metals and Diamonds
Russian Federation

Anton A. Shipnigov - Junior Researcher at the Metallurgy Laboratory.

38 Gagarin Blvd, Irkutsk 664025



References

1. Thomas K.G. Pressure oxidation overview. Developments in Mineral Processing. 2005;15:346-369. https://doi.org/10.1016/S0167-4528(05)15015-7.

2. Balikov S.V., Gudkov S.S., Emel’yanov Yu.E., Bogorodskij A.V., Epiforov A.V., Boldyrev A.V., Dzgoev Ch.T. Pressure oxidation of gold ores and concentrates. Irkutsk: OAO «Irgiredmet»; 2016, 471 р. (In Russ.).

3. Nabojchenko S.S., Shneerson Ya.M., Kalashnikova M.I., Chugaev L.V. Pressure hydrometallurgy of non-ferrous metals. Ekaterinburg: Ural Federal University named after the first President of Russia B.N. Yeltsin; 2009, vol. 2, 612 р. (In Russ.).

4. Ferron C.J. Recovery of gold as by-product from the base-metals industries. In: Gold Ore Processing. 2016;46:831856. https://doi.org/10.1016/S0167-4528(05)15035-2.

5. Dreisinger D.B. Case study flowsheets: copper gold concentrate treatment. In: Gold Ore Processing. 2016;44:803820. https://doi.org/10.1016/S0167-4528(05)15033-9.

6. Epiforov A.V., Bogorodskij A.V., Balikov S.V., Emel’yanov Yu.E., Kopylova N.V. Laboratory studies of hightemperature autoclave oxidation of polymetallic gold-bearing sulfide concentrates. Proceedings of Irkutsk State Technical University. 2012;1:116-119. (In Russ.). EDN: OOVJBZ.

7. Dzgoev C.T., Yevtuschevich I.I., Schtoick S.G., Yepiforov A.V., Gudkov S.S., Yemilianov Y.E., Balikov S.V. Pressure oxidation pyrometallurgical technology of gold-bearing and lead and zinc sulfide concentrates undergoing combined treatment. In: IMPC 2016 – 28TH International Mineral Processing Congress. 11–15 September 2016, Québec. Québec: Canadian Institute of Mining, Metallurgy and Petroleum; 2016. Paper № 801. EDN: YCALZJ.

8. Evtushevich I.I., Dzgoev Ch.T., Epiforov A.V., Gudkov S.S., Emel’yanov Yu.E., Balikov S.V. Pox-pirometallurgical processing method for gold-bearing and lead-zinc concentrates. Journal of Siberian Federal University. Chemistry. 2017;10(1)110-124. https://doi.org/10.17516/1998-2836-0011. EDN: YMRZVZ.

9. Smirnov K.M., Molchanova T.V., Anan’ev A.V., Akimova I.D., Ovcharenko E.V., Krylova O.K. Promising technology for reprocessing complex uranium ores from the Elkon deposit. Atomic Energy. 2017;122(6):309-314. (In Russ.). EDN: YTDGZH.

10. Shatalov V.V., Pirkovskij S.A., Smirnov K.M. Oxidation of pyrite by oxygen and concurrent leaching of uranium from ore under the conditions of an autogenous autoclave process. Atomic Energy. 2007;102(2):120-124. (In Russ.). EDN: IWDRHX.

11. Fleming C.A. Basic iron sulphate – a potential killer for pressure oxidation processing of refractory gold concentrates if not handled appropriately. SGS Minerals Services. Technical Paper. 2009;6. Available from: https:// www.sgs.ca/-/media/global/documents/technical-documents/sgs-technical-papers/sgs-min-tp2009-06-basiciron-sulphate-in-pox-processing-of-refractory-gold.pdf [Accessed 28th February 2024].

12. Bekbutaeva N.N., Sharipov H.T., Lukomskaya G.A., Bekbutaev A.N., Tashaliev F.U., Saparov A.R. Molybdenum extraction from sulfuric acid mother liquors after rhenium sorption. Universum: tekhnicheskie nauki. 2021;12. Available from: https://7universum.com/ru/tech/archive/item/12816 [Accessed 28th February 2024]. (In Russ.).

13. Bekbutaeva N.N., Sharipov H.T., Lukomskaya G.A., Bekbutaev A.N., Tashaliev F.U. Molybdenum extraction from sulfuric acid mother liquors after rhenium sorption. In: Kompozitnye materialy na osnove tekhnogennyh othodov i mestnogo syr’ya: sostav, svojstva i primenenie: materialy mezhdunarodnoj nauchno-tekhnicheskoj konferencii = Composite materials based on technogenic waste and local raw materials: composition, properties and application: materials of the International scientific and technical conference. Tashkent, 16–17 September 2021. Tashkent: Saydana-print; 2021, р. 84-86. (In Russ.).

14. Epiforov A.V., Emelianov Yu.E., Kopylova N.V., Shketova L.E., Seleznev A.N., Mikhailova A.N., et al. Modern methods of non-ferrous metal extraction from technological solutions. Analiz, dobycha i pererabotka poleznyh iskopaemyh: sbornik nauchnyh trudov (posvyashchen 150-letiyu instituta Irgiredmet) = Analysis, mining and processing of mineral resources: collected scientific papers (dedicated to the 150th anniversary of the Irgiredmet Institute). Irkutsk: "Irgiredmet"; 2021, р. 185-212. (In Russ.).

15. Mikhailova A.N., Faiberg A.A., Dementiev V.E., Mineev G.G., Bonch-Osmolovskaya E.A. Biogenic hydrogen sulfide production. Proceedings of Irkutsk State Technical University. 2015;1:124-128. (In Russ.). EDN: THNDUR.

16. Ivanov V.M., Polyanskov R.A. Sorption of bismuth(III) ions by bismuthol I immobilized on silica gel. Moscow University Chemistry Bulletin. 2006;47(6):402-408. (In Russ.).

17. Afzaletdinova N.G., Murinov Yu.I. Extraction of bismuth by digexilsulphoxide from nitric acid solutions. Vestnik Bashkirskogo universiteta. 2018;23(3):710-715. (In Russ.). EDN: YOOWYX.

18. Epiforov A.V. Behavior of gold and silver during pressure oxidation of sulfide concentrates/. In: Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr’ya: materialy XXVIII Mezhdunarodnoj nauchno-tekhnicheskoj konferencii = Scientific principles and ore and technogenic raw material processing practice: materials of the 28th International scientific and technical conference. 3–12 April 2023, Ekaterinburg. Ekaterinburg: Ural State Mining University; 2023, р. 194-199. (In Russ.).

19. Epiforov A.V. Chemistry of high-temperature autoclave oxidation of sulfide concentrates. In: Sovremennye tekhnologii proizvodstva cvetnyh metallov: materialy Mezhdunarodnoj nauchnoj konferencii, posvyashchennoj 80-letiyu S.S. Nabojchenko = Modern technologies of non-ferrous metals production: materials of the International scientific conference dedicated to 80th anniversary of S.S. Naboychenko. 24–25 March 2022, Ekaterinburg: Ural Federal University named after the first President of Russia B.N. Yeltsin; 2022, р. 51-58. (In Russ.).

20. Gathje J.C., Simmons G.L. High temperature pressure oxidation of ore and ore concentrates containing silver using controlled precipitation of sulfate species. Patent USA, no. 6641642; 2003.


Review

For citations:


Epiforov A.V., Balikov S.V., Shipnigov A.A. Element behavior during autoclave oxidation of polymetallic sulfide flotation concentrate containing tungsten and molybdenum. iPolytech Journal. 2024;28(3):538-546. (In Russ.) https://doi.org/10.21285/1814-3520-2024-3-538-546. EDN: LMRIUH

Views: 137


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)