Preview

iPolytech Journal

Advanced search

Overview of methods for implementing virtual inertia in energy systems with wind and solar power plants

https://doi.org/10.21285/1814-3520-2024-1-95-110

EDN: TQEHZH

Abstract

The article aims to review the literature on methods for implementing virtual inertia of wind and solar power plants, which can be used to improve control over them. About 50 scientific articles and reviews selected from  various scientific sources (including IEEE, Web of Science, and Scopus) using the following keywords were examined: wind turbine, wind farm, virtual inertia, microgrid, energy storage systems, supercapacitor, and frequency control. The method of systematic review of specialized sources was applied to provide a well-defined structure for a given field of study through article categorization. Works devoted to reducing the negative impact of renewable energy sources on the energy system were analyzed. The article shows the relevance of developing technologies that enable an improvement in the control capabilities of a power plant using renewable energy sources since their low inertia leads to a decrease in the stability of energy systems. The literature analysis indicates that one of the solutions to increase the stability of such energy systems involves creating virtual inertia in wind turbines and solar panels. However, due to the limited capacity of individual generating units, the effectiveness of implementing virtual inertia may not be sufficient when it is implemented independently in individual units. In this connection, it can be promising to create virtual inertia using a hybrid system comprising a supercapacitor and a generating unit controlled via the virtual synchronous generator method. This review analyzes specialized sources on the methods for implementing virtual inertia in energy systems with wind and solar power plants. It is concluded that no studies of the proposed approach have been conducted or presented to date, and the ideas described in the overview can be confirmed by developing the required algorithms and analyzing the results.

About the Authors

A. R. Idrisov
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Azat R. Idrisov, Postgraduate Student

19 Mira St., Ekaterinburg 620002



A. A. Achitaev
Sayano-Shushensky branch of the Siberian Federal University
Russian Federation

Andrey A. Achitaev, Cand. Sci. (Eng.), Associate Professor, Deputy Director for Research

46, Cheremushki settlement, Sayanogorsk 655619



References

1. Mosa M.A., Yousef M.Y., Masry S.M.E., Ghany A.M.A., Ali A.A. Frequency support of AC microgrid with high penetration of photovoltaic using super-capacitor // Sustainable Energy Technologies and Assessments. 2022. Vol. 53. Part A. Р. 102364. https://doi.org/10.1016/j.seta.2022.102364.

2. Rezkalla M, Pertl M, Marinelli M. Electric power system inertia: requirements, challenges, and solutions // Electrical Engineering. 2018. Vol. 100. P. 2677–2693. https://doi.org/10.1007/s00202-018-0739-z.

3. Xiong Liansong, Liu Xiaokang, Zhang Donghui, Liu Yonghui. Rapid power compensation-based frequency response strategy for low-inertia power systems // IEEE Journal of Emerging and Selected Topics in Power Electronics. 2021. Vol. 9. Iss. 4. P. 4500–4513. https://doi.org/10.1109/JESTPE.2020.3032063.

4. Johnson S.C., Rhodes J.D., Webber M.E. Understanding the impact of nonsynchronous wind and solar generation on grid stability and identifying mitigation pathways // Applied Energy. 2020. Vol. 262. Р. 114492. https://doi.org/10.1016/j.apenergy.2020.114492.

5. Cheema K.M. A comprehensive review of virtual synchronous generator // International Journal of Electrical Power & Energy Systems. 2020. Vol. 120. Р. 106006. https://doi.org/10.1016/j.ijepes.2020.106006.

6. Unamuno E., Barrena J.A. Design and small-signal stability analysis of a virtual-capacitor control for dc microgrids // 19th European Conference on Power Electronics and Applications. 2017. https://10.23919/EPE17ECCEEurope.2017.8098923.

7. Suvorov A.A., Askarov A.B., Rudnik V.E., Andreev M.V., Baj Yu.D. Synthesis and testing of typical automatic control system structures based on a virtual synchronous generator for generating plants with a power converter. Elektricheskie stantsii = Power Technology and Engineering. 2022;3:43-57. (In Russ.). http://doi.org/10.34831/EP.2022.1088.3.006. EDN: DTZCNI.

8. Askarov A.B., Suvorov A.A., Andreev M.V., Gusev A.S. A review and comparison of current trends in virtual synchronous generator’s models // IFAC-PapersOnLine. 2022. Vol 55. Iss. 9. P. 350–355. https://doi.org/10.1016/j.ifacol.2022.07.061.

9. Suvorov A.A., Askarov A.B., Andreev M.V., Baj Yu.D., Rudnik V.E. Power converter automatic control system based on a freely configurable structure of a virtual synchronous generator. Elektrichestvo. 2022;4:15-26. (In Russ.). https://doi.org/10.24160/0013-5380-2022-4-15-26. EDN: QLMNUD.

10. Suvorov A., Askarov A., Bay Yu., Ufa R. Freely Customized virtual generator model for grid-forming converter with hydrogen energy storage // International Journal of Hydrogen Energy. 2022. Vol. 47. Iss. 82. P. 34739–4761. https://doi.org/10.1016/j.ijhydene.2022.08.119.

11. Li Pengfei, Hu Weihao, Xu Xiao, Qi Huang, Liu Zhou, Chen Zhe. A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control // Energy. 2019. Vol. 189. Р. 116389. https://doi.org/10.1016/j.energy.2019.116389.

12. Verma P, Kaur T, Kaur R. Power control strategy of an integrated PV system for active power reserve under dynamic operating conditions // Sustainable Energy Technologies and Assessments. 2021. Vol. 45. Р. 101066. https://doi.org/10.1016/j.seta.2021.101066.

13. Jibji-Bukar F, Anaya-Lara O. Frequency support from photovoltaic power plants using offline maximum power point tracking and variable droop control // IET Renewable Power Generation. 2019. Vol. 13. P. 2278–2286. https://doi.org/10.1049/iet-rpg.2019.0211.

14. Rajan R., Fernandez F.M. Power control strategy of photovoltaic plants for frequency regulation in a hybrid power system // International Journal of Electrical Power & Energy Systems. 2019. Vol. 110. P. 171–183. https://doi.org/10.1016/j.ijepes.2019.03.009.

15. Feldmann D., De Oliveira R.V. Operational and control approach for PV power plants to provide inertial response and primary frequency control support to power system black-start // International Journal of Electrical Power & Energy Systems. 2021. Vol. 127. Р. 106645. https://doi.org/10.1016/j.ijepes.2020.106645.

16. Kanwal S., Khan B., Ali S.M., Mehmood C.A. Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system // Renewable Energy. 2018. Vol. 126. P. 865–875. https://doi.org/10.1016/j.renene.2018.04.012.

17. Kerdphol T., Rahman F.S., Watanabe M., Mitani Yа., Turschner D., Beck H.-P. Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation // IEEE Access. 2019. Vol. 7. P. 14422–14433. https://doi.org/10.1109/ACCESS.2019.2892747.

18. Saxena P., Singh N., Pandey A.K. Enhancing the dynamic performance of microgrid using derivative controlled solar and energy storage based virtual inertia system // Journal of Energy Storage. 2020. Vol. 31. Р. 101613. https://doi.org/10.1016/j.est.2020.101613.

19. Zhong Cheng, Li Huayi, Zhou Yang, Lv Yueming, Chen Jikai, Li Yang. Virtual synchronous generator of PV generation without energy storage for frequency support in autonomous microgrid // International Journal of Electrical Power & Energy Systems. 2022. Vol. 134. Р. 107343. https://doi.org/10.1016/j.ijepes.2021.107343.

20. Zyryanov V.M., Myachina A.V., Nesterenko G.B. Using energy storage systems for solar power plant integration into traditional power systems. Vesti v elektroenergetike = Electric Power News. 2020;5:47-58. (In Russ.). EDN: RQRNZA.

21. Yang Li, Hu Zhijian, Xie Shiwei, Kong Shunfei, Lin Weiwei. Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster // Electric Power Systems Research. 2019. Vol. 173. P. 71–85. https://doi.org/10.1016/j. epsr.2019.04.011.

22. Nguyen Van Tan, Le Thanh Bac, Vo Quang Son, Dao Huu Dan. Stability analysis of an isolated microgrid with the presence of the hybrid energy storage system-based virtual synchronous generator // Journal of Science and Technology. 2020. Vol. 18. No. 6. P. 46–51. https://doi.org/10.31130/jst-ud2020-101E.

23. Mohamed M.M., El Zoghby H.M., Sharaf S.M., Mosa M.A. Optimal virtual synchronous generator control of battery/ supercapacitor hybrid energy storage system for frequency response enhancement of photovoltaic/diesel microgrid // Journal of Energy Storage. 2022. Vol. 51. Р. 104317. https://doi.org/10.1016/j.est.2022.104317.

24. Sarojini R.K., Kaliannan P., Teekaraman Y., Nikolovski S., Baghaee H.R. An enhanced emulated inertia control for grid-connected pv systems with HESS in a weak grid // Energies. 2021. Vol. 14. Iss. 6. Р. 1721. https://doi.org/10.3390/en14061721.

25. Huang Xin, Wang Keyou, Li Guojie, Zhang Hua. Virtual inertia-based control strategy of two-stage photovoltaic inverters for frequency support in islanded micro-grid // Electronics. 2018. Vol. 7. Iss. 11. Р. 340. https://doi.org/10.3390/ electronics7110340.

26. Lyu Xue, Xu Zhao, Zhao Jian. A coordinated frequency control strategy for photovoltaic system in microgrid // Journal of International Council on Electrical Engineering. 2018. Vol. 8. Iss. 1. P. 37–43. https://doi.org/10.1080/22348972.2018.1 470295.

27. Zhang Xing, Gao Qian, Guo Zixuan, Zhang Haizheng, Li Ming, Li Fei. Coordinated control strategy for a PV-storage grid-connected system based on a virtual synchronous generator // Global Energy Interconnection. 2020. Vol. 3. Iss. 1. P. 51–59. https://doi.org/10.1016/j.gloei.2020.03.003.

28. Xiong Liansong, Li Yujun, Zhu Yixin, Yang Ping, Xu Zhirong. Coordinated control schemes of super-capacitor and kinetic energy of DFIG for system frequency support // Energies. 2018. Vol. 11. Iss. 1. Р. 103. https://doi.org/10.3390/ en11010103.

29. Inthamoussou F.A., Pegueroles-Queralt J., Bianchi F.D. Control of a supercapacitor energy storage system for microgrid applications // IEEE Transactions on Energy Conversion. 2013. Vol. 28. Iss. 3. P. 690–697. https://doi.org/10.1109/TEC.2013.2260752.

30. Jami M., Shafiee Q., Gholami M., Bevrani H. Control of a super-capacitor energy storage system to mimic inertia and transient response improvement of a direct current micro-grid // Journal of Energy Storage. 2020. Vol. 32. Р. 101788. https://doi.org/10.1016/j.est.2020.101788.

31. Xu Qianwen, Hu Xiaolei, Wang Peng, Xiao Jianfang, Tu Pengfei, Wen Changyun, et al. A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous dc microgrid // IEEE Transactions on Industrial Electronics. 2017. Vol. 64. Iss. 7. P. 5930–5941. https://doi.org/10.1109/TIE.2016.2608880.

32. Zhang Runfan, Hredzak B., Morstyn T. Distributed control with virtual capacitance for the voltage restorations state of charge balancing and load allocations of heterogeneous energy storages in a DC datacenter microgrid // IEEE Transactions on Energy Conversion. 2019. Vol. 34. Iss. 3. P. 1296–1308. https://doi.org/10.1109/TEC.2018.2889065.

33. Unamuno E., Barrena J.A. Equivalence of primary control strategies for ac and dc microgrids // Energies. 2017. Vol. 10. Iss. 1. Р. 91. https://doi.org/10.3390/en10010091.

34. Huang Linbin, Xin Huanhai, Wang Zhen, Wu Kuayu, Wang Haijiao, Jiabing Hu, et al. A virtual synchronous control for voltage-source converters utilizing dynamics of DC-link capacitor to realize self-synchronization // IEEE Journal of Emerging and Selected Topics in Power Electronics. 2017. Vol. 5. Iss. 4. P. 1565–1577. https://doi.org/10.1109/ JESTPE.2017.2740424.

35. Peng Qiao, Yang Yongheng, Liu Tianqi, Blaabjerg F. Coordination of virtual inertia control and frequency damping in PV systems for optimal frequency support // CPSS Transactions on Power Electronics and Applications. 2020. Vol. 5. Iss. 4. Р. 305–316. https://doi.org/10.24295/CPSSTPEA.2020.00025.

36. Arani M.F.M., Mohamed Yа.A.-R.I. Analysis and impacts of implementing droop control in DFIG-based wind turbines on microgrid/weak-grid stability // IEEE Transactions on Power Systems. 2015. Vol. 30. Iss. 1. P. 385–396. https://doi.org/10.1109/TPWRS.2014.2321287.

37. Hafiz F., Abdennour A. Optimal use of kinetic energy for the inertial support from variable speed wind turbines // Renewable Energy. 2015. Vol. 80. P. 629–643. https://doi.org/10.1016/j.renene.2015.02.051.

38. Li Dongdong, Zhu Qianwei, Lin Shunfu, Bian Xiaoyan. A self-adaptive inertia and damping combination control of VSG to support frequency stability // IEEE Transactions on Energy Conversion. 2017. Vol. 32. Iss. 1. P. 397–398. https://doi.org/10.1109/TEC.2016.2623982.

39. Liu Ju, Yang Dongjun, Yao Wei, Fang Rengcun, Zhao Hongsheng, Wang Bo. PV-based virtual synchronous generator with variable inertia to enhance power system transient stability utilizing the energy storage system // Protection and Control of Modern Power Systems. 2017. Vol. 2. Iss. 4. Р. 429–437. https://doi.org/10.1186/s41601-017-0070-0.

40. Yang Li, Hu Zhijian, Xie Shiwei, Kong Shunfei, Lin Weiwei. Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster // Electric Power Systems Research. 2019. Vol. 173. P. 71–85. https://doi.org/10.1016/j.epsr.2019.04.011.

41. Fang Jingyang, Tang Yi, Li Hongchang, Li Xiaoqiang. A battery ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators // IEEE Transactions on Power Electronics. 2018. Vol. 33. Iss. 4. Р. 2820–2824. https://doi.org/10.1109/TPEL.2017.2759256.

42. Hazra S., Bhattacharya S. Hybrid energy storage system comprising of battery and ultra-capacitor for smoothing of oscillating wave energy // IEEE Energy Conversion Congress and Exposition. 2016. https://doi.org/10.1109/ECCE.2016.7855172.

43. Fang Jingyang, Yi Tang, Li Hongchang, Li Xiaoqiang. A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators // IEEE Transactions on Power Electronics. 2018. Vol. 33. Iss. 4. P. 2820–2824. https://doi.org/10.1109/TPEL.2017.2759256.

44. Vassilakis A., Kotsampopoulos P., Hatziargyriou N., Karapanos V. A battery energy storage based virtual synchronous generator // IREP Symposium Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid. 2013. https://doi.org/10.1109/IREP.2013.6629425.

45. Huiyu Miao, Chenyu Zhang, Fei Mei, Yun Yang, Jianyong Zheng. A novel control strategy for hybrid energy system in virtual synchronous generator // 13th IEEE Conference on Industrial Electronics and Applications (Wuhan, 31 May – 2 June 2018). Wuhan: IEEE, 2018. P. 2244–2249. https://doi.org/10.1109/ICIEA.2018.8398083.

46. Zhang Qiao, Wang Lijia, Li Gang, Liu Yan. A real-time energy management control strategy for battery and supercapacitor hybrid energy storage systems of pure electric vehicles // Journal of Energy Storage. 2020. Vol. 31. Р. 101721. https://doi.org/10.1016/j.est.2020.101721.

47. Xinchen Zhao, Wang Xinchen, Ke Wang. Research for virtual synchronous generator with considering energy storage system // Materials Science and Engineering: IOP Conference Series. 2019. Vol. 486. Р. 012048. https://doi.org/10.1088/1757-899X/486/1/012048.

48. Fang Jingyang, Tang Yi, Li Hongchang, Li Xiaoqiang. A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators // IEEE Transactions on Power Electronics. 2018. Vol. 33. Iss. 4. P. 2820–2824. https://doi.org/10.1109/TPEL.2017.2759256.

49. Shi Mingming, Chen Hongfei, Zhang Chenyu, Mei Fei, Fang Jicheng, Miao Huiyu. A virtual synchronous generator system control method with battery SOC feedback // 2nd IEEE Conference on Energy Internet and Energy System Integration. 2018. https://doi.org/10.1109/EI2.2018.8582563. 50. Wang Ruiming, Qin Shiyao, Bao Weiyu, Hou Anxiang, Ying You, Ding Lei. Configuration and control strategy for an integrated system of wind turbine generator and supercapacitor to provide frequency support // International Journal of Electrical Power & Energy Systems. 2023. Vol. 154. Р. 109456. https://doi.org/10.1016/j.ijepes.2023.109456.

50. Udalov S.N., Achitaev A.A., Pristup A.G., Bochenkov B.M., Pankratz Yu., Tarbill R.D. Increasing the regulating ability of a wind turbine in a local power system using magnetic continuous variable transmission // Wind Engineering. 2018. Vol. 42. Iss. 5. P. 411–435. https://doi.org/10.1177/0309524X18780404. EDN: YBTTNB.

51. Udalov S.N., Achitaev A.A., Pristup A.G., Bochenkov B.M. Increase of dynamic stability stoke of autonomous energy system based on wind energy installations under sudden load change. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Tomsk Polytechnic University. Geo Assets Engineering. 2016;327(8):89-98. EDN: RSYLYW.

52. Udalov S.N., Pristup A.G., Achitaev A.A. Research of magnetic transmission with variable gear ratio in a winddriven generator for improving dynamic stability stoke. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Tomsk Polytechnic University. Geo Assets Engineering. 2015;326(10):123-134. EDN: VOQZHB.


Review

For citations:


Idrisov A.R., Achitaev A.A. Overview of methods for implementing virtual inertia in energy systems with wind and solar power plants. iPolytech Journal. 2024;28(1):95-110. (In Russ.) https://doi.org/10.21285/1814-3520-2024-1-95-110. EDN: TQEHZH

Views: 358


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)