Preview

iPolytech Journal

Advanced search

Forecasting and examples of abrasive tool improvement for centerless steel grinding

https://doi.org/10.21285/1814-3520-2024-1-51-63

EDN: JOHNBJ

Abstract

The present work is aimed at enhancing the grinding efficiency of abrasive tools by designing and selecting their optimal characteristics. To that end, regularities in the process of defect-free grinding of workpieces made of hard-tomachine corrosion-resistant stainless steel of 12Х18Н10Т grade, nickel alloy of ХН60ВТ grade, structural steel of 30ХГСА grade, and complex-alloyed steel of 12Х2НВФА grade are studied by simulation modeling in the DEFORM software environment. The temperature in the cutting zone is selected as a criterion determining the quality indicators of the grinding process. The research methodology is based on the theory of metal cutting. It was established that each of the investigated abrasive tools, i.e., 1 25A F60 O6V, 1 25A F60 Q6V, 1 25A F80 O6V, and 1 25A F80 N7V is characterized by its rational field of application. For the “Pin” workpiece, the economic effect achieved due to elimination of scrap caused by grinding burns on the ground surface amounted to 18,095 RUB. In terms of the Ra parameter, an improved roughness of the machined surface can be achieved by small cutting depths (from 0.05 mm to 0.25 mm) in combination with a driving wheel speed of up to 108 min-1. The required accuracy of machining can be achieved by cutting depths of up to 0.25 mm in combination with a driving wheel speed of 86 min-1. Hence, a new methodology for designing and selection of abrasive tools is proposed. This methodology ensures minimal softening of the ground material, as well as the required surface roughness, accuracy of workpiece dimensions, and machining performance. In future research, coarser-grained (F40, F36) abrasive tools should be investigated.

About the Authors

A. A. Nepogozhev
JSC Moscow Machine-Building Plant “Avangard”
Russian Federation

Andrey A. Nepogozhev, Head of the Cutting Tools Bureau

 



B. Ya. Mokritskii
Komsomolsk-na-Amure State University
Russian Federation

Boris Ya. Mokritskii, Dr. Sci. (Eng.), Professor, Professor of the Department of Mechanical Engineering

27, Lenin pr., Komsomolsk-on-Amur 681013



A. A. Skripilev
Komsomolsk-na-Amure State University
Russian Federation

Aleksandr A. Skripilev, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Engineering Technology Department

27, Lenin pr., Komsomolsk-on-Amur 681013



V. N. Anikin
Moscow Institute of Steel and Alloys
Russian Federation

Vyatcheslav N. Anikin, Cand. Sci. (Eng.), Associate Professor of the Department of Functional Nanosystems and High Temperature Materials, Head of the Scientific and Technical Center at the All-Russian Research and Design Institute of HardAlloys and Refractory Metals

4 Leninsky pr., Moscow 119049



S. B. Maryin
Komsomolsk-na-Amure State University
Russian Federation

Sergey B. Maryin, Dr. Sci. (Eng.), Associate Professor, Head of the Aviation Engineering Department

27, Lenin pr., Komsomolsk-on-Amur 681013



References

1. Nepogozhev A.A., Zheltuhin A.V., Krit B.L., Morozova N.V., Epel’fel’d A.V., Peretyagin P.Yu. Plasma-electrolyte coatings resistant to friction stir welding. In: Mashinostroenie: tradicii i innovacii (MTI – 2018): materialy XI Mezhdunarodnoj konferencii = Mechanical engineering: traditions and innovations (MIT - 2018): materials of the 11th International conference. Moscow: Moscow State University of Technology “Stankin”; 2018, 91 р. (In Russ.).

2. Romanenko A.M., Shatko D.B., Nepogozhev A.A., Karavaev Ya.S. Abrasive machining of high-alloy corrosion resistant steels by example of 12Kh18N10T. Vestnik Koncerna VKO “Almaz – Antej” = Journal of “Almaz – Antey” Air and Space Defence Corporation. 2021;(3):98-106. (In Russ.). https://doi.org/10.38013/2542-0542-2021-3-98-106.

3. Starkov V.K. Grinding with highly porous wheels. Moscow: Mashinostroenie; 2007, 354 р. (In Russ.).

4. Elyanov V.D. Automatic cycle grinding. Moscow: Mashinostroenie; 1980, 56 р. (In Russ.).

5. Yashchericyn P.I., Karaim I.P. High-speed internal grinding of bearing parts. In: Progressivnye tekhnologicheskie processy v mekhanosborochnom proizvodstve, napravlennye na povyshenie proizvoditel’nosti truda i kachestva izdelij: sbornik statej = Progressive technological processes in mechanical assembly production to increase labor efficiency and product quality: collection of articles. Leningrad: Mashinostroenie; 1977, 282 р. (In Russ.).

6. Hessel D., Karyazin A., Starkov V.K., Ryabtsev S.A., Gorin N.A. High-efficiency rotary dressing method for cubic boron nitride wheels. Journal of Superhard Materials. 2015;37(3):194-201. https://doi.org/10.3103/S1063457615030077.

7. Voznesensky V.A. Modern methods for composite material optimization. Kyiv: Naukova Dumka; 1988, 144 р. (In Russ.).

8. Evseev D.G., Salnikov A.N. Physical foundations of the grinding process. Saratov: Saratov State University; 1978, 128 р. (In Russ.).

9. OzelT., Altan N. Determination of workpiece from stress and friction al the chip-tool contract for high-speed cutting. International Journal of Machine Tools and Manufacture. 2000;40(1):133-152. https://doi.org/:10.1016/S0890-6955(99)00051-6.

10. Espinosa C. Modeling high speed machining the SPH method. In: X International LS-DYNA Users Conference. 8–10 Iune 2008, Dearborn, Michigan. Dearborn, Michigan; 2008, р. 1-1–1-12. 11. Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Materialia. 2000;48(1):1-29. https://doi.org/10.1016/S1359-6454(99)00285-2.

11. Okumiya M., Gripentrog M. Mechanical properties and tribological behavior of TiN-CrAlN and CrN-CrAlN multilayer coatings. Surface and Coating Technologies. 1999;112:123-128. https://doi.org/10.1016/S0257-8972(98)00799-3.

12. Byrne G., Dornfeld D., Denkena B. Advancing cutting technology. CIRP Annals. 2003;52(2):483-507. https://doi.org/10.1016/S0007-8506(07)60200-5.

13. Ducros C., Benevent V., Savchette F. Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools. Surface and Coatings Technology. 2003;163(2):681-688. https://doi.org/10.1016/S0257-8972(02)00656-4.

14. Mayrhofer P.H., Willmann H., Mitterer C. Recrystallization and grain growth of nanocomposite Ti-B-N coatings. Thin Solid Films. 2003;440(1-2):174-179. https://doi.org/10.1016/S0040-6090(03)00858-7.

15. Music D., Schneider I.M. Effect of transition metal additives on electronic structure and elastic properties of TiAl and Ti3Al. Physical Review. 2006;B 74:174110. https://doi.org/10.1103/PhysRevB.74.174110.

16. Fuch M., Scheffer M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using densityfunctional theory. Computer Physics Communications. 1998;119:67-11. https://doi.org/10.48550/arXiv.cond-mat/9807418.

17. Sendvik A.B. Method of making ultrafine WC-CO alloys. Patent GB, no. 99/131280; 1999.

18. Krivoruchko D.V., Zaloga V.A. Cutting process modeling using the finite element method: methodological foundations: monograph. Sumy: Universitetskaya kniga; 2012, 496 р. (In Russ.).

19. Ryabtsev S.A., Polkanov E.G. Stability properties dynamics of ceramic composites based on aluminium oxide with structure increasing. Ogneupory i tekhnicheskaya keramika. 2014;6:25-28. (In Russ.).


Review

For citations:


Nepogozhev A.A., Mokritskii B.Ya., Skripilev A.A., Anikin V.N., Maryin S.B. Forecasting and examples of abrasive tool improvement for centerless steel grinding. iPolytech Journal. 2024;28(1):51-63. (In Russ.) https://doi.org/10.21285/1814-3520-2024-1-51-63. EDN: JOHNBJ

Views: 145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)