Preview

iPolytech Journal

Расширенный поиск

Возможность использования мультиагентного управления режимами виртуальной инерции ветроэлектрической станции

https://doi.org/10.21285/1814-3520-2023-4-694-726

EDN: FJPNDG

Аннотация

Цель – провести обзор литературных источников, посвященных увеличению эффективности и качеству управления ветроэлектрическими станциями. Анализируются работы по снижению негативного влияния ветроустановок на энергосистему и их участию в оказании системных услуг, например первичном регулировании частоты. Изучено около 150 научных статей и обзоров, подобранных в различных научных источниках (в том числе IEEE, Web of Science и Scopus) по ключевым словам «ветроэлектрическая станция», «ветроустановка», «мультиагентное управление», «виртуальная инерция», «микросеть», «виртуальная электростанция», «регулирование частоты». Применен метод систематизированного обзора специализированных источников, который дает возможность обеспечить четко определенную структуру для данной области исследований путем категоризации статей. Показано, что развитие технологий, позволяющих повысить регулировочные способности ветроэлектрической станции, является актуальной задачей, так как низкая инерция источников возобновляемой энергии приводит к снижению устойчивости энергосистем, в составе которых значительную долю составляют ветроэлектрические станции. Из анализа литературных источников следует, что одним из решений повышения устойчивости таких энергосистем является создание виртуальной инерции ветроэнергетических установок. Однако, ввиду ограниченных мощности и возможностей регулирования каждого отдельного ветрогенератора, эффективность внедрения виртуальной инерции может быть недостаточной при ее независимой реализации на отдельных установках. Более того, показано, что несогласованное управление может повлиять на устойчивость системы. В данном обзоре выполнен анализ специализированных источников по вопросу скоординированного мультиагентного управления виртуальной инерцией нескольких ветроустановок (ветропарка). Сделан вывод о том, что на сегодняшний день исследования предлагаемого подхода не проводились либо не представлены, а описанные в обзоре тезисы можно подтвердить, разработав необходимые алгоритмы и проведя анализ результатов.

Об авторе

В. Ю. Астапов
Институт систем энергетики им. Л.А. Мелентьева СО РАН
Россия

Астапов Вячеслав Юрьевич, аспирант, отдел электроэнергетических систем

664033, г. Иркутск, ул. Лермонтова, 130



Список литературы

1. Xu Xiwang, Sun Lu, An Ning, Li Fang, Su Lining, Qin Xiaohui. Simulation research of wind turbine frequency modulation based on different wind power penetration levels // 8th Renewable Power Generation Conference. 2019. Р. 0435. https://doi.org/10.1049/cp.2019.0435.

2. Елистратов В.В. Возобновляемая энергетика. 3-е изд., доп. СПб.: Санкт-Петербургский политехнический университет Петра Великого, 2016. 421 с.

3. Lombardi P., Sokolnikova T., Suslov K., Voropai N., Styczynski Z.A. Isolated power system in Russia: a chance for renewable energies? // Renewable Energy. 2016. Vol. 90. 532–541. https://doi.org/10.1016/j.renene.2016.01.016.

4. Воропай Н.И., Губко М.В., Ковалев С.П., Массель Л.В., Новиков Д.А., Райков А.Н. [и др.]. Проблемы развития цифровой энергетики в России // Проблемы управления. 2019. № 1. С. 2–14. https://doi.org/10.25728/pu.2019.1.1.

5. Сабинин Г.Х. Теория и аэродинамический расчет ветряных двигателей // Труды ЦАГИ. 1931. №. 104. С. 59–60.

6. Фатеев Е.М. Методика определения параметров ветроэнергетических расчетов ветросиловых установок. М.: Акад. наук СССР, 1957. 87 с.

7. Безруких П.П. Эффективность возобновляемой энергетики. Мифы и факты // Технологии, средства механизации и энергетическое оборудование. 2016. № 6. С. 11–24. EDN: WDLFHB.

8. Лятхер В.М. Развитие ветроэнергетики // Малая энергетика. 2006. № 1-2. С. 23–38. EDN: JVJUWX.

9. Грибков С.В., Юдаев И.В., Ракитов С.А. Многомодульные ветроэнергетические установки в системах гарантированного электроснабжения // Техника в сельском хозяйстве. 2012. № 2. С. 26–29. EDN: XTRIPZ.

10. Martínez J.C., Gómez S.A., Rodríguez Amenedo J.L.R. Alonso-Martínez J. Analysis of the frequency response of wind turbines with virtual inertia control // IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (Madrid, 9–12 June 2020). Madrid: IEEE, 2020. P. 9160718. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160718.

11. Кирпичникова И.М., Мартьянов А.С., Соломин Е.В. Преобразование энергии в ветроэнергетческих установках // Международный научный журнал Альтернативная энергетика и экология. 2010. №. 1. С. 93–97.

12. He Ping, Wen Fushuan, Ledwich Gerard, Xue Yusheng. Investigation of the effects of various types of wind turbine generators on power-system stability // Journal of Energy Engineering. 2015. Vol. 141. Iss. 3. Р. 04014007. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000176.

13. Удалов С.Н., Манусов В.З. Моделирование ветроэнергетических установок и управление ими на основе нечеткой логики: монография. Новосибирск: Новосибирский государственный технический университет, 2013. 200 c.

14. Dermentzoglou J.C., Karlis A.D. Development of linear models of static var compensators and design of controllers suitable for enhancing dynamic/transient performance of power systems including wind farms // Electric power systems research. 2011. Vol. 81. Iss. 4. Р. 922–929. https://doi.org/10.1016/j.epsr.2010.11.021.

15. McSwiggan D., Littler T. Analysis of fixed-speed wind farm low-frequency power pulsations using a wavelet-prony method // IEEE PES General Meeting. 2010. https://doi.org/10.1109/PES.2010.5590058.

16. Ekwue A., Nanka-Bruce O., Rao Jhansi, McCool D. Dynamic stability investigations of the fault ride through capabilities of a wind farm // Paper ID. 2008. Т. 99.

17. Saidi A.S., Chokri B. Effect of static and dynamic load model on dynamic stability of distribution network with fixed and variable speed wind farm: a bifurcation analysis // International Review on Modelling and Simulations. 2012. Vol. 5. Iss. 4. С. 1690–1699.

18. Morren J., De Haan S.W.H. Ridethrough of wind turbinеs with dоubly-fed induction generаtor during a voltage dip // IEEE Transactions on Energy Conversion. 2005. Vol. 20. Iss. 2. P. 435–441. https://doi.org/10.1109/TEC.2005.845526.

19. Bialas H., Pawelek R., Wasiak I. A Simulation model for providing analysis of wind farms frequency and voltage regulation services in an electrical power system // Energies. 2021. Vol. 14. Iss. 8. P. 2250. https://doi.org/10.3390/en14082250.

20. Wang Yi, Meng Jianhui, Zhang Xiangyu, Xu Lie. Control of PMSG-based wind turbines for system inertial response and power oscillation damping // IEEE Transactions on Sustainable Energy. 2015. Vol. 6. Iss. 2. С. 565–574. https://doi. org/10.1109/TSTE.2015.2394363.

21. Li Wendan, Liu Yutian. SVG supplementary damping control for the dynamic stability of wind farm // China International Conference on Electricity Distribution. 2014. Р. 340–343. https://doi.org/10.1109/CICED.2014.6991724.

22. Wu Ziping, Gao Wenzhong, Yang Daye, Shi Yan. Comprehensive modeling and analysis of permanent magnet synchronous generator-wind turbine system with enhanced low voltage ride through capability // IEEE Energy Conversion Congress and Exposition (Raleigh, NC, 15–20 September). Raleigh, NC: IEEE, 2012. Р. 2091–2098. https://doi.org/10.1109/ECCE.2012.6342554.

23. Han Bing, Wang Yi, Li Heming, Zhang Xiangyu. Supplementary power control of PMSG-based wind farms for system dynamic stability // International Conference on Electrical Machines and Systems (Busan, 26–29 October 2013). Busan: IEEE, 2013. Р. 291–295. https://doi.org/10.1109/ICEMS.2013.6754469.

24. Nagarajan S.T., Kumar N. Active power variation in wind farms by varying the number of wind turbine units // International Journal of Sustainable Energy. 2013. Vol. 32. Iss. 6. Р. 735–749. https://doi.org/10.1080/14786451.2013.824876.

25. Sun Jun, Sheng Lijian, Sun Yong, Zhou Zhenkai, Fu Rong. Stability simulation analysis of a hybrid wind-battery system // Communications in Computer and Information Science / eds. L. Zhang, X. Song, Y. Wu. Singapore: Springer, 2016. Vol. 645. Р. 154–163. https://doi.org/10.1007/978-981-10-2669-0_17.

26. Son Dae-Hee, Ali M., Kang Sang-Hee, Heo Jae-Haeng, Nam Soon-Ryul. A method for increasing the operating limit capacity of wind farms using battery energy storage systems with rate of change of frequency // Energies. 2018. Vol. 11. Iss. 4. Р. 758. https://doi.org/10.3390/en11040758.

27. Shazon Мd.N.H., Masood N., Ahmed Н.M., Deeba S.R., Hossain E. Exploring the utilization of energy storage systems for frequency response adequacy of a low inertia power grid // IEEE Access. 2021. Vol. 9. Р. 129933–129950. https://doi.org/10.1109/ACCESS.2021.3114216.

28. Карамов Д.Н. Математическое моделирование автономной системы электроснабжения использующей возобновляемые источники энергии // Вестник Иркутского государственного технического университета. 2015. Т. 9. С. 133–140.

29. Карамов Д.Н. Структурная оптимизация автономной системы электроснабжения, использующей возобновляемые источники энергии // Сборник трудов молодых ученых к 55-летию Института систем энергетики им. Л.А. Мелентьева СО РАН. Иркутск: ИСЭМ СО РАН, 2015. Вып. 45. С. 84–89.

30. Попель О.С. Автономные энергоустановки на возобновляемых источниках энергии // Энергосбережение. 2006. № 3. С. 21–30.

31. Удалов С.Н., Ачитаев А.А. Автоматическое управление ветровыми установками с магнитной редукцией скорости вращения генератора и турбины: монография. Саяногорск: Саяно-Шушенский филиал Федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет», 2021. 220 с. EDN: WCRGMM.

32. Udalov S.N., Achitaev A.A., Pristup A.G., Bochenkov B.M., Pankratz Yu., Tarbill R.D. Increasing the regulating ability of a wind turbine in a local power system using magnetic continuous variable transmission // Wind Engineering. 2018. Vol. 42. Iss. 5. Р. 411–435. https://doi.org/10.1177/0309524X18780404.

33. Удалов С.Н., Ачитаев А.А., Приступ А.Г., Боченков Б.М. Повышение запаса динамической устойчивости автономной энергетической системы на базе ветроэнергетических установок при резких изменениях режима нагрузки // Известия Томского политехнического университета. Инжиниринг георесурсов. 2016. Т. 327. № 8. С. 89–98.

34. Удалов С.Н., Приступ А.Г., Ачитаев А.А. Исследование магнитной трансмиссии с переменным передаточным отношением в ветроэнергетической установке в целях повышения запаса динамической устойчивости // Известия Томского политехнического университета. Инжиниринг георесурсов. 2015. Т. 326. № 10. С. 123–134.

35. Vithanage V. A review on multi-agent system based energy management systems for micro grids // AIMS Energy. 2019. Vol. 7. Iss. 6. Р. 924–943.

36. Zhong Weilin, Murad M.A.A., Liu Muyang, Milano F. Impact of virtual power plants on power system short-term transient response // Electric Power Systems Research. 2020. Vol. 189. Р. 106609. https://doi.org/10.1016/j.epsr.2020.106609.

37. Исмоилов С.Т., Труфакин С.С., Фишов А.Г. Мультиагентное регулирование напряжения в электрических сетях с распределенной генерацией и активными потребителями // Современные направления развития систем релейной защиты и автоматики энергосистем: труды 4-й Междунар. науч.-практ. конф. (г. Екатеринбург, 3–7 июня 2013 г.). Екатеринбург: Российский нац. комитет СИГРЭ. 2013. С. 99–100.

38. McArthur S., Davidson E.M., Catterson V.M., Dimeas A., Hatziargyriou N.D., Ponci F, et al. Multi-agent systems for power engineering applications - part 2: technologies, standards and tools for building multi-agent systems // IEEE Transactions on Power Systems. 2007. Vol. 22. Iss. 4. P. 1743–1752. https://doi.org/10.1109/TPWRS.2007.908471.

39. Saleem A., Lind M., Veloso M.M. Multiagent based protection and control in decentralized electric power systems // 9th International Conference on Autonomous Agents and Multiagent Systems AAMAS. 2010. Р. 83–89.

40. Solanki J., Khushalani Solanki S., Schulz N. Multi-agent-based reconfiguration for restoration of distribution systems with distributed generators // Integrated Computer-Aided Engineering. 2010. Vol. 17. Iss. 4. P. 331–346. https://doi.org/10.3233/ICA-2010-0351.

41. Solanki J., Khushalani Solanki S., Schulz N. A multi-agent solution to distribution systems restoration // IEEE transactions on Power Systems. 2007. Vol. 22. Iss. 3. P. 1026–1034. https://doi.org/10.1109/TPWRS.2007.901280.

42. Kumar A., Tiwari L., Somwanshi D. Design architecture and optimization of multi agent based smart grid // IEEMA Engineer Infinite Conference. 2018. https://doi.org/10.1109/ETECHNXT.2018.8385289.

43. Ju Liwei, Zhang Qi, Tan Zhongfu, Wang Wei, Xin He, Zhang Zehao. Multi-agent-system-based coupling control optimization model for micro-grid group intelligent scheduling considering autonomy-cooperative operation strategy // Energy. 2018. Vol. 157. Iss. 2. p. 1035–1052. https://doi.org/10.1016/j.energy.2018.06.097.

44. Divényi D., Dán A.М. Agent-based modeling of distributed generation in power system control // IEEE Transactions on Sustainable Energy. 2013. Vol. 4. Iss. 4. P. 886–893. https://doi.org/10.1109/TSTE.2013.2253811.

45. Gao Yang, Ai Qian. Distributed multi-agent control for combined AC/DC grids with wind power plant clusters // IET Generation, Transmission & Distribution. 2018. Vol. 12. Iss. 3. P. 670–677. https://doi.org/10.1049/iet-gtd.2017.0689.

46. Bulatov Yu.N., Kryukov A.V. A multi-agent control system of distributed generation plants // International Conference on Industrial Engineering, Applications and Manufacturing. 2017. https://doi.org/10.1109/ICIEAM.2017.8076128.

47. Vorobev P, Huang Po-Hsu, Hosani M., Kirtley J.L., Turitsyn K. High-fidelity model order reduction for microgrids stability assessment // IEEE Transactions on Power Systems. 2017. Vol. 33. Iss. 1. С. 874–887. https://doi.org/10.1109/TPWRS.2017.2707400.

48. Chen Min-Rong, Zeng Guo-Qiang, Dai Yu-Xing, Lu Kang-Di. Fractional-order model predictive frequency control of an islanded microgrid // Energies. 2018. Vol. 12. Iss. 1. Р. 84. https://doi.org/10.3390/en12010084.

49. Sahoo A.K., Abhitharan K.P., Kalaivani A., Karthik T.J. Feasibility study of microgrid installation in an educational institution with grid uncertainty // 4th International Conference on Eco-friendly Computing and Communication Systems. 2015. Vol. 70. Р. 550–557. https://doi.org/10.1016/j.procs.2015.10.099.

50. Boemer J.C., Gibescu M., Kling W.L. Dynamic models for transient stability analysis of transmission and distribution systems with distributed generation: an overview // IEEE Bucharest PowerTech. 2009. https://doi.org/10.1109/PTC.2009.5282177.

51. Derrouazin A., Mekkakia-Maaza N., Taleb R., Nacef M., Аillerie M. Low cost hybrid energiess smart management system applied for micro-grids // Energy Procedia. 2014. Vol. 50. Р. 729–737.

52. Yakine K.E.N., Menaa M., Hasni M., Boudour M. A novel optimal frequency control strategy for an isolated wind–diesel hybrid system with energy storage devices // Wind Engineering. 2016. Vol. 40. Iss. 6. P. 497–517. https://doi.org/10.1177/0309524X16671091.

53. Muljadi E., McKenna H.E. Power quality issues in a hybrid power system // IEEE Transactions on Industry Applications. 2001. Vol. 2. Iss. 3. Р. 803–809. https://doi.org/10.1109/TIA.2002.1003433.

54. Zhang Yang, Lundblad A., Campana P.E. Benavente F., Yan Jinyue. Battery sizing and rule-based operation of gridconnected photovoltaic-battery system: а case study in Sweden // Energy Conversion and Management. 2017. Vol. 133. Р. 249–263.

55. Muljadi E., Butterfield C. Yinger R., Romanowitz H. Energy storage and reactive power compensator in a large wind farm // AIAA Aerospace Sciences Meeting and Exhibit. 2004. С. 114–123. https://doi.org/10.2514/6.2004-352.

56. Vernet A., Khayesi J.N., George V., George G., Bahaj A.S. How does energy matter? Rural electrification, entrepreneurship, and community development in Kenya // Energy Policy. 2019. Vol. 126. Р. 88–98.

57. Arulampalam A., Barnes M., Engler A., et al. Control of power electronic interfaces in distributed generation microgrids // International Journal of Electronics. 2004. Vol. 91. Iss. 9. Р. 503–523. https://doi.org/10.1080/00207210412331289023 .

58. Katiraei F., Iravani M.R., Lehn P.W. Micro-grid autonomous operation during and subsequent to islanding process // IEEE Transactions on Power Delivery. 2005. Vol. 20. Iss. 1. Р. 248–257. https://doi.org/10.1109/TPWRD.2004.835051.

59. Van Ackooij W., De Boeck J., Detienne B., Pan S., Poss M. Optimizing power generation in the presence of micro-grids // European Journal of Operational Research. 2018. Vol. 271. Iss. 2. Р. 450–461. https://doi.org/10.1016/j.ejor.2018.05.042.

60. Lin Haiyang, Wang Qinxing, Wang Yu, Yiling Liu, Huang Nianzhi, Wennersten R., et al. A multi-agent based optimization architecture for energy hub operation // Energy Procedia. 2017. Vol. 142. Р. 2158–2164. https://doi.org/10.1016/j.egypro.2017.12.621.

61. Ormandjieva O., Bentahar J., Huang Jinzi, Kuang Heng. Modelling multi-agent systems with category theory // Procedia Computer Science. 2015. Vol. 52. Iss. 1. Р. 538–545. https://doi.org/10.1016/j.procs.2015.05.031.

62. González-Pardo A, Varona P, Camacho D, et al. Communication by identity discrimination in bio-inspired multi-agent systems // Concurrency and Computation Practice and Experience. 2012. Vol. 24. Iss. 6. Р. 589–603. https://doi.org/10.1002/cpe.1866.

63. Mehta R., Radhakrishnan B. M., Srinivasan D., Panda S.K., Rathore A.K. Market based multi-agent control of microgrid // IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing. 2014. https://doi.org/10.1109/ISSNIP.2014.6827704.

64. Colson C.M., Nehrir M.H. A review of challenges to real-time power management of microgrids // IEEE Power & Energy Society General Meeting. 2009. https://doi.org/10.1109/PES.2009.5275343.

65. Guo Ge, Ding Lei, Han Qing-Long. A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems // Automatica. 2014. Vol. 50. Iss. 5. Р. 1489–1496. https://doi.org/10.1016/j.automatica.2014.03.017.

66. Li Hongjie, Ming Chen, Shen Shigen, Wong W.K. Event-triggered control for multi-agent systems with randomly occurring nonlinear dynamics and time-varying delay // Journal of the Franklin Institute. 2014. Vol. 351. Iss. 5. Р. 2582–2599.

67. Wang Lingfeng, Wang Zhu, Yang Rui. Intelligent multiagent control system for energy and comfort management in smart and sustainable buildings // IEEE Transactions on Smart Grid. 2012. Vol. 3. Iss. 2. Р. 605–617. https://doi.org/10.1109/TSG.2011.2178044.

68. Funabashi T., Fujita G., Koyanagi K., Yokoyama R. Field tests of a microgrid control system // Proceedings of the 41st International Universities Power Engineering Conference. 2006. https://doi.org/10.1109/UPEC.2006.367750.

69. Yousef H., Al-Badi A.H., Polycarpou A. Power management for hybrid distributed generation systems // International Journal of Sustainable Engineering. 2009. Vol. 11. Iss. 1. Р. 1–10. https://doi.org/10.1080/19397038.2017.1387825.

70. Kim Hak-Man, Kinoshita T. Multiagent system for Microgrid operation based on power market environment // 31st International Telecommunications Energy Conference. 2009. https://doi.org/10.1109/INTLEC.2009.5351771.

71. Yuqin Xu, Li Zhang, Zengping Wang. Research on service restoration for large area blackout of distribution system with distributed generators // International Conference on Sustainable Power Generation and Supply. 2009. https://doi.org/10.1109/SUPERGEN.2009.5347908.

72. Li X.D., Xu Y.Q., Zhang L. Distribution service restoration with DGs based on multi-agent immune algorithm // 2nd International Conference on Power Electronics and Intelligent Transportation System. 2009. https://doi.org/10.1109/ PEITS.2009.5407060.

73. Yavuz L., Onen A., Muyeen S., Innocent K. Transformation of Microgrid to Virtual Power Plant – A Comprehensive Review // IET Generation, Transmission and Distribution. 2019. Vol. 13. Iss. 11. https://doi.org/10.1049/iet-gtd.2018.5649.

74. Chen Junru, Liu Muyang, Milano F.. Aggregated model of virtual power plants for frequency and voltage stability analysis // IEEE Transactions on Power Systems. 2021. Vol. 36. Iss. 5. P. 4366–4375. https://doi.org/10.1109/TPWRS.2021.3063280.

75. Marecek J., Roubalik M., Ghosh R., Shorten R.N., Wirth F.R. Predictability and fairness in load aggregation and operations of virtual power plants // Automatica. 2023. Vol. 147. Р. 110743. https://doi.org/10.48550/arXiv.2110.03001.

76. Moutis P., Georgilakis P.S., Hatziargyriou N.D. Voltage regulation support along a distribution line by a virtual power plant based on a center of mass load modeling // IEEE Transactions on Smart Grid. 2018. Vol. 9. Iss. 4. P. 3029–3038.

77. Zhong Weilin, Chen Junru, Liu Muyang, Murad M.A.A., Milano F. Coordinated control of virtual power plants to improve power system short-term dynamics // Energies. 2021. Vol. 14. Iss. 4. Р. 1182. https://doi.org/10.3390/en14041182.

78. Xin Huanhai, Gan Deqiang, Li Naihu, Li Huijie, Dai Chensong. Virtual power plant-based distributed control strategy for multiple distributed generators // IET Control Theory & Applications. 2013. Vol. 7. Iss. 1. P. 90–98. https://doi.org/10.1049/iet-cta.2012.0141.

79. Häberle V., Fisher M.W., Araujo E.P., Dorfler F. control design of dynamic virtual power plants: an adaptive divideand-conquer approach // IEEE Transactions on Power Systems. 2021. Vol. 37. Iss. 5. 4040–4053. https://doi.org/10.1109/TPWRS.2021.3139775.

80. Björk J., Johansson K.H., Dorfler F. Dynamic virtual power plant design for fast frequency reserves: coordinating hydro and wind // IEEE Transactions on Control of Network Systems. 2022. Vol. 10. Iss. 3. P. 1266–1278. https://doi.org/10.1109/TCNS.2022.3181553.

81. Tan Zhenfei, Zhong Haiwang, Xia Qing, Kang Chongqing, Wang Xuanyuan Sharon, Tang Honghai. Estimating the robust P-Q capability of a technical virtual power plant under uncertainties // IEEE Transactions on Power Systems. 2020. Vol. 35. Iss. 6. P. 4285–4296. https://doi.org/10.1109/TPWRS.2020.2988069.

82. Ahangar R.A., Sheykholeslam A. Bulk virtual power plant, a novel concept for improving frequency control and stability in presence of large scale RES // International Journal of Mechatronics, Electrical and Computer Technology. 2014. Vol. 4. Iss. 10. P. 1017–1044.

83. Zhong Weilin, Tzounas G., Liu Muyang, Milano F. On-line inertia estimation of virtual power plants // 22nd Power Systems Computation Conference. 2022. Vol. 212. Iss. 2. Р. 108336 https://doi.org/10.1016/j.epsr.2022.108336.

84. Li Pengfei, Hu Weihao, Hu Rui, Huang Qi, Yao Jun, Chen Zhe. Strategy for wind power plant contribution to frequency control under variable wind speed // Renewable Energy. 2019. Vol. 130. Р. 1226–1236. https://doi.org/10.1016/j.renene.2017.12.046.

85. Melhem B.M., Zhou Yakun, Liu Steven. Frequency support and stability analysis for an integrated power system with wind farms // IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. 2018. https://doi.org/10.1109/IECON.2018.8592707.

86. Boyle J., Littler T., Muyeen S.M., Foley A.M. An alternative frequency-droop scheme for wind turbines that provide primary frequency regulation via rotor speed control // Electrical Power and Energy Systems. 2021. Vol. 133. Iss. 1. Р. 107219. https://doi.org/10.1016/j.ijepes.2021.107219.

87. Gomez L.A.G., Lourenço L.F.N., Salles M.B.C., Grilo A.P., Sguarezi A.J. Frequency support of grid connected wind turbine based-DFIG // International Conference on Clean Electrical Power. 2019. https://doi.org/10.1109/ICCEP.2019.8890110.

88. Nadour M., Essadki A., Nasser T. Coordinated control using backstepping of DFIG-based wind turbine for frequency regulation in high wind energy penetrated system // Hindawi, Mathematical Problems in Engineering. 2020. Vol. 3. Р. 8287949. https://doi.org/10.1155/2020/8287949.

89. Lyu Xue, Jia Youwei, Dong Zhaoyang. Adaptive frequency responsive control for wind farm considering wake interaction // Journal of modern power systems and clean energy. 2021. Vol. 9. Iss. 5. Р. 1066–1075. https://doi.org/10.35833/MPCE.2020.000237.

90. Singh N., De Kooning J.D.M., Vandevelde L. Dynamic wake analysis of a wind turbine providing frequency support services // IET Renewable Power Generation. 2022. https://doi.org/10.1049/rpg2.12455.

91. Xi Jiangbei, Geng Hua, He Xiuqiang. Adaptive VSG control scheme for large scale wind farms to improve frequency response characteristics // IEEE Industry Applications Society Annual Meeting. 2019. https://doi.org/10.1109/IAS.2019.8912376.

92. Abazari A., Monsef H., Wu Bin. Load frequency control by de-loaded wind farm using the optimal fuzzy-based PID droop controller // IET Renewable Power Generation. 2019. Vol. 13. Iss. 1. P. 180–190. https://doi.org/10.1049/iet-rpg.2018.5392.

93. Becker H., Valois-Rodriguez M.F., Holicki L., Malekian K., Gartmann P. Evaluation of wind power plants’ control capabilities to provide primary frequency support during system restoration // International Conference on Smart Energy Systems and Technologies. 2021. https://doi.org/10.1109/SEST50973.2021.9543369.

94. Junkai Huang, Zhifang Yang, Juan Yu, Juelin Liu, Ning Guo. Parameter design of DFIG-based controller for frequency stability improvement // 5th Asia Conference on Power and Electrical Engineering. 2020. https://doi.org/10.1109/ACPEE48638.2020.9136320.

95. Morovati S., Pulgar H. Control coordination between DFIG-based wind turbines and synchronous generators for optimal primary frequency response // 52nd North American Power Symposium. 2020.

96. Zhang Liusheng, Xie Zhen, Chang Yuyang, Zhu Hong. Virtual inertia adaptive control strategy for DFIG wind turbines based on exponential function // 15th IEEE Conference on Industrial Electronics and Applications (Kristiansand, 9–13 November). Kristiansand: IEEE, 2020. P. 407–411. https://doi.org/10.1109/ICIEA48937.2020.9248341.

97. Yakout A.H., Kotb H., Sabry W. Power system stability improvement by employing strong action controller acting as virtual inertia controller // 22nd International Middle East Power Systems Conference. 2021. P. 562–568. https://doi.org/10.1109/MEPCON50283.2021.9686209.

98. Li Jianwei, Yang Qingqing, Yao Pengfei, Sun Qixing, Zhang Zhenyu, Zhang Min, et al. A novel use of the hybrid energy storage system for primary frequency control in a microgrid // Energy Procedia. 2016. Vol. 103. P. 82–87. https://doi.org/10.1016/j.egypro.2016.11.253.

99. Chen Xiaobin, Liu Hui, Su Jinshuo, Qin Risheng. The control strategy of energy storage system for primary frequency regulation and wind power ramp control // 5th Asia Conference on Power and Electrical Engineering. 2020. P. 652–656. https://doi.org/10.1109/ACPEE48638.2020.9136416.

100. Guo Qiang, Huang Congzhi, Xue Zhiwei, Yin Yue, Liang Weifeng, Sheng Xinxin. Research on energy storage system participation in primary frequency regulation of large-scale wind turbines // 1st International Conference on Industrial Artificial Intelligence. 2019. https://doi.org/10.1109/ICIAI.2019.8850837.

101. Martínez-Lucas G., Sarasúa J.I., Pérez-Díaz Ju.I., Martínez S., Ochoa D. Analysis of the implementation of the primary and/or inertial frequency control in variable speed wind turbines in an isolated power system with high renewable penetration // Case Study: El Hierro Power System. Electronics. 2020. Vol. 9. Iss. 6. Р. 901. https://doi.org/10.3390/electronics9060901.

102. Wang Zizhao, Shi Linjun, Feng, Peng Yan, Lou Bailiang, Lee Kwang Y. Coordinated droop and virtual inertia control of wind farm for frequency regulation // IEEE Power & Energy Society General Meeting. 2020. https://doi.org/10.1109/PESGM41954.2020.9281722.

103. Ochoa-Correa D., Martinez S. Analytical approach to understanding the effects of implementing fast-frequency response by wind turbines on the short-term operation of power systems // Energies. 2021. Vol. 14. Iss. 12. Р.3660. https://doi.org/10.3390/en14123660.

104. Zhang Tianhai, Shu Jianjun, Wang Jingbo, Tang Keyi, Liu Nana. Adaptive virtual inertial control of wind turbine generators considering wind speed and load variation // 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference. 2020. https://doi.org/10.1109/appeec48164.2020.9220484.

105. Xiao Qi, Madonski R., Congzhi Huang, Yiming Ke. Tracking-differentiator-based dynamic virtual inertial control of offshore wind power plant for frequency regulation // Electrical Power and Energy Systems. 2022. Vol. 141. Iss. 106767. Р. 108150. https://doi.org/10.1016/j.ijepes.2022.108150.

106. Krpan M., Kuzle I. Dynamic characteristics of virtual inertial response provision by DFIG-based wind turbines // Electric Power Systems Research. 2020. Vol. 178. Р. 106005. https://doi.org/10.1016/j.epsr.2019.106005.

107. Bastiani B.A., De Oliveira R.V. Adaptive MPPT control applied to virtual synchronous generator to extend the inertial response of type-4 wind turbine generators // Sustainable Energy Grids and Networks. 2021. Vol. 27. Р. 100504. https://doi.org/10.1016/j.segan.2021.100504.

108. Zhong Cheng, Lv Yueming, Zhou Yang, Li Huayi. An equivalent rotor speed compensation control of PMSG-based wind turbines for frequency support in islanded microgrids // Frontiers in Energy Research. 2021. Vol. 9. Р. 717327. https://doi.org/10.3389/fenrg.2021.717327.

109. Zhu Ying, Liu Sheng, Wang Wei. Comprehensive coordinated control strategy of PMSG-based wind turbine for system inertia support // IET Renewable Power Generation. 2021. Vol. 15. Р. 1915–1926. https://doi.org/10.1049/rpg2.12115.

110. Yang Li, Hu Zhijian, Xie Shiwei, Kong Shunfei, Lin Weiwei. Adjustable virtual inertia control of supercapacitors in PVbased AC microgrid cluster // Electric Power Systems Research. 2019. Vol. 173. Iss. 3053. P. 71–85. https://doi.org/10.1016/j.epsr.2019.04.011.

111. Zeng Xueyang, Li Xiaopeng, Wang Shunliang, Liu Tianqi, Zhang Chun, Zhang Huajie. Virtual inertia control and shortterm primary control for PMSG-based wind turbine using supercapacitor // 4th International Conference on HVDC. 2020. P. 191–196. https://doi.org/10.1109/HVDC50696.2020.9292799.

112. Hasan N.S., Rosmin N., Nordin N.M., Hassan M.Yu. Virtual inertial support extraction using a super-capacitor for a wind-PMSG application // IET Renewable Power Generation. 2019. Vol. 13. Iss. 10. P. 1802–1808. https://doi.org/10.1049/iet-rpg.2018.5655.

113. Hasan N.S., Rosmin N., Nordin N.J.M., Mustaamal A.H., Husin S.M., Aripriharta А., et al. Virtual inertia support for wind turbine system // Indonesian Journal of Electrical Engineering and Computer Science. 2020. Vol. 17. Iss. 2. P. 629–636. https://doi.org/10.11591/ijeecs.v17.i2.pp629-636.

114. Mauricio J.M., Malamaki K.-N., Maza-Ortegaet J.M., Kryonidis G., Barragan-Villarejoal M., Gkavanoudis S.I. Shortterm energy recovery control for virtual inertia provision by renewable energy sources // IEEE 30th International Symposium on Industrial Electronics. 2021. https://doi.org/10.1109/ISIE45552.2021.9576213.

115. Zhu Yuyan, Wang Huaiyuan, Zhu Zhenshan. Improved VSG control strategy based on the combined power generation system with hydrogen fuel cells and super capacitors // Energy Reports. 2021. Vol. 7. P. 6820–6832. https://doi.org/10.1016/j.egyr.2021.10.056.

116. Fregelius M., Lundin U. Hardware implementation of a synthetic inertia system for grid stability // 8th International Conference on Renewable Energy Research and Applications. 2019. P. 186–190. https://doi.org/10.1109/ICRERA47325.2019.8997097.

117. Huiyu Miao, Chenyu Zhang, Mei Fei, Yun Yang, Jianyong Zheng. A novel control strategy for hybrid energy system in virtual synchronous generator // 13th IEEE Conference on Industrial Electronics and Applications. 2018. P. 2244–2249. https://doi.org/10.1109/ICIEA.2018.8398083.

118. Shadabi H., Kamwa I. Enabling hybrid energy storage systems in VSC-based MTDC grids for decentralized fast frequency response control in low-inertia AC/DC systems // IET Generation, Transmission and Distribution. 2021. Vol. 16. Р. 897–911. https://doi.org/10.1049/gtd2.12335.

119. Jithin T., Rajeev T., Jithin S. Inertia control of hybrid AC/DC microgrid using supercapacitors // Second International Conference on Power, Control and Computing Technologies. 2022. https://doi.org/10.1109/ICPC2T53885.2022.9776860.

120. Fang Jingyang, Tang Yi, Li Hongchang, Blaabjerg F. The role of power electronics in future low inertia power systems // IEEE International Power Electronics and Application Conference and Exposition. 2018. https://doi.org/10.1109/ PEAC.2018.8590632.

121. Fang Jingyang, Tang Yi, Li Hongchang, Li Xiaoqiang. A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators // IEEE Transactions on Power Electronics. 2018. Vol. 33. Iss. 4. P. 2820–2824. https://doi.org/10.1109/TPEL.2017.2759256.

122. Chen Liang, Blaabjerg Frede. Virtual synchronous generator based on type-IV wind turbine with supercapacitor as storage // IEEE/IAS Industrial and Commercial Power System Asia (Chengdu, 18–21 July 2021). Chengdu: IEEE, 2021. P. 1194–1200. https://doi.org/10.1109/ICPSAsia52756.2021.9621445.

123. Shi Mingming, Chen Hongfei, Zhang Chenyu, Mei Fei, Fang Jicheng, Huiyu Miao. A virtual synchronous generator system control method with battery SOC feedback // 2nd IEEE Conference on Energy Internet and Energy System Integration. 2018. https://doi.org/10.1109/EI2.2018.8582563.

124. Zhang Ruiqi, Fang Jingyang, Tang Yi. Inertia emulation through supercapacitor energy storage systems // 10th International Conference on Power Electronics and ECCE Asia. 2019. P. 1365–1370. https://doi.org/10.23919/ICPE2019ECCEAsia42246.2019.8796987.

125. Grover H., Verma A., Bhatti T.S., Hossain M.J. Frequency regulation scheme based on virtual synchronous generator for an isolated microgrid // International Conference on Power, Instrumentation, Control and Computing. 2020. https://doi.org/10.1109/PICC51425.2020.9362392.

126. Nguyen Hong Viet Phuong, Van Tan Nguyen, Nguyen Binh Nam, Truong Thi Bich Thanh, Fanfei Lee, Le Quoc Cuong. Stability analysis of an islanded microgrid using supercapacitor-based virtual synchronous generator // 5th International Conference on Green Technology and Sustainable Development. 2020. P. 454–460. https://doi.org/10.1109/GTSD50082.2020.9303070.

127. Sarableh A.M., Khorsandi A., Hosseinian Sh. Performance evaluation and determination of hybrid battery energy storage for optimal placement of virtual inertia in island microgrid // 26th International Electrical Power Distribution Conference. 2022. P. 49–53. https://doi.org/10.1109/EPDC56235.2022.9817365.

128. Krpan M., Kuzle I. Impact of ultracapacitor modelling on fast frequency control performance // International Conference on Smart Grids and Energy Systems. 2020. P. 326–331. https://doi.org/10.1109/SGES51519.2020.00064.

129. Jiang Qin, Zeng Xueyang, Li Baohong, Wang Shunliang, Liu Tianqi, Chen Zhe, et al. Time-sharing frequency coordinated control strategy for PMSG-based wind turbine // EEE Journal on Emerging and Selected Topics in Circuits and Systems. 2022. Vol. 12. Iss. 1. P. 268–278. https://doi.org/10.1109/JETCAS.2022.3152796.


Рецензия

Для цитирования:


Астапов В.Ю. Возможность использования мультиагентного управления режимами виртуальной инерции ветроэлектрической станции. iPolytech Journal. 2023;27(4):694-726. https://doi.org/10.21285/1814-3520-2023-4-694-726. EDN: FJPNDG

For citation:


Astapov V.Yu. Applicability of multi-agent control for virtual inertia modes in a wind power plant. iPolytech Journal. 2023;27(4):694-726. (In Russ.) https://doi.org/10.21285/1814-3520-2023-4-694-726. EDN: FJPNDG

Просмотров: 284


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)