Методы удаления хлорид-ионов при производстве цинка из пыли электродуговой плавки
https://doi.org/10.21285/1814-3520-2023-2-392-421
Аннотация
Цель – провести обзор литературных источников с целью поиска технологии, применимой на практике для производства катодного цинка из сложного по химическому составу техногенного хлорсодержащего сырья, в частности, из пыли электродуговой плавки. На основе литературного обзора опубликованных данных исследований российских и зарубежных ученых проведен поиск методов очистки технологических растворов с высокой концентрацией хлорид-ионов, полученных в результате гидрометаллургической обработки техногенных пылей электродуговой плавки. Показано, что большинство способов очистки имеют существенные ограничения, основные из которых: строгие требования к кислотности обрабатываемого раствора, недостаточная эффективность процесса обработки, вторичное загрязнение среды освобождаемыми хлорид-ионами и высокая стоимость реагентов или оборудования. По результатам анализа опубликованных данных описаны как способы снижения содержания хлора в исходной пыли, поступающей на переработку, так и методы дехлорирования технологических растворов, основанные на принципах осаждения, ионного обмена, сорбции и окисления. Дополнительно обобщены опубликованные данные и проанализированы экспериментальные результаты по удалению хлора из технологических стоков и растворов различной природы. В результате проведенного анализа литературных источников проведено сравнение применяющихся на промышленных предприятиях и недавно изученных лабораторных методов дехлорирования растворов с точки зрения доступности их для внедрения, экономической эффективности и степени удаления хлорид-ионов. Как результат, недостатки существующих процессов переработки техногенного хлорсодержащего сырья электродуговой плавки может решить разработка крупномасштабных, устойчивых и недорогих гибридных технологий, базирующихся на принципах экстракции, ионного обмена и осаждения.
Ключевые слова
Об авторах
Д. И. БлудоваРоссия
Блудова Дана Иршековна - ассистент кафедры металлургии цветных металлов.
620002, Екатеринбург, ул. Мира, 19
С. В. Мамяченков
Россия
Мамяченков Сергей Владимирович - доктор технических наук, старший научный сотрудник, заведующий кафедрой металлургии цветных металлов.
620002, Екатеринбург, ул. Мира, 19
О. С. Анисимова
Россия
Анисимова Ольга Сергеевна – кандидат химических наук, доцент, доцент кафедры металлургии цветных металлов.
620002, Екатеринбург, ул. Мира, 19
Список литературы
1. Перескока В.В., Камкина Л.В., Пройдак Ю.С., Стовпченко А.П., Квичанская М.И . Восстановительно-тепловая обработка пыли электрофильтров дуговой сталеплавильной печи // Вестник Приазовского государственного технического университета. Серия: Технические науки. 2010. № 21. С. 13–16.
2. Wu Xuelian, Liu Zhongqing, Liu Xu. Chloride ion removal from Zinc sulfate aqueous solution by electrochemical method // Hydrometallurgy. 2013. Vol. 134-135. Р. 62–65. https://doi.org/10.1016/j.hydromet.2013.01.017.
3. Chen Wei-Sheng, Shen Yun-Hwei, Tsai Min-Shing, Chang Fang-Chih. Removal of chloride from electric arc furnace dust // Journal of Hazardous Materials. 2011. Vol. 190. Iss. 1-3. Р. 639–644. https://doi.org/10.1016/j.jhazmat.2011.03.096.
4. Стовпченко А.П., Камкина Л.В., Пройдак Ю.С., Деревянченко И.В., Кучеренко О.Л., Бондаренко М.Ю. Теоретические и экспериментальные исследования состава и восстановимости пыли дуговых сталеплавильных печей // Электрометаллургия. 2009. № 8. С. 29–36.
5. Wei Yu-Ling, Lin Chang-Yuan, Wang H. Paul. Detoxification of hazardous dust with marine sediment // Marine pollution bulletin. 2014. Vol. 85. Iss. 2. Р. 810–815. https://doi.org/10.1016/j.marpolbul.2014.01.016.
6. Tsubouchi N., Hashimoto H., Ohtaka N., Ohtsuka Ya. Chemical characterization of dust particles recovered from bag filters of electric arc furnaces for steelmaking: some factors influencing the formation of hexachlorobenzene // Journal of Hazardous Materials. 2010. Vol. 183. Iss. 1-3. Р. 116–124. https://doi.org/10.1016/j.jhazmat.2010.06.122.
7. Lee Gye-Seung, Song Young Jun. Recycling EAF dust by heat treatment with PVC // Minerals Engineering. 2007. Vol. 20. Iss. 8. Р. 739–746. https://doi.org/10.1016/j.mineng.2007.03.001.
8. Doronin I.E., Svyazhin A.G. Properties of steelmaking dust and the mechanism of its formation // Metallurgist. 2012. Vol. 55. Iss. 11-12. Р. 879–886. https://doi.org/10.1007/s11015-012-9517-8.
9. Lin Xiaolong, Peng Zhiwei, Yan Jiaxing, Li Zhizhong, Hwang Jiann-Yang, Zhang Yuanbo, Li Guanghui, Jiang Tao. Pyrometallurgical recycling of electric arc furnace dust // Journal of Cleaner Production. 2017. Vol. 149. Р. 1079–1100. https://doi.org/10.1016/j.jclepro.2017.02.128.
10. Паньшин А.М., Леонтьев Л.И., Козлов П.А., Дюбанов В.Г., Затонский А.В., Ивакин Д.А. Технология переработки пыли электродуговых печей ОАО «Северсталь» в вельцкомплексе ОАО «ЧЦЗ» // Экология и промышленность России. 2012. № 11. С. 4–6. https://doi.org/10.18412/1816-0395-2012-11-4-6.
11. Пат. № 2617086, Российская Федерация, C22B. Способ селективного извлечения оксида железа и оксида цинка из шламов и пылей газоочисток металлургических агрегатов / Г.А. Фарнасов, В.И. Ковалев, И.Ф. Курунов, А.М. Бижанов, И.Н. Вершинин; заявители и патентообладатели Г.А. Фарнасов, А.М. Бижанов. Заявл . 11.03.2016; опубл. 19.04.2017. Бюл. № 10.
12. Yakornov S.A., Panshin A.M., Kozlov P.A., Ivakin D.A. Modern state of leaching technologies for ferrous metal dusts and their pyrometallurgical processing products (acid, ammonium and alkaline technologies) // Цветные металлы. 2017. № 5. С. 37–43. https://doi.org/10.17580/tsm.2017.05.05.
13. Kukurugya F., Havlik T., Kekki A., Forsén O. Characterization of dusts from three types of stainless steel production equipment // Metall. 2013. Vol. 67. Iss. 4. Р. 154–159.
14. Qu Fulai, Zhang Jinkai, Liu Guirong, Zhao Shunbo. Experimental study on chloride ion diffusion in concr ete affected by exposure conditions // Materials. 2022. Vol. 15. Iss. 8. Р. 2917. https://doi.org/10.3390/ma15082917.
15. Gu¨resin N., Topkaya Y.A. Dechlorination of a zinc dross // Hydrometallurgy. 1998. Vol. 49. Iss. 1-2. Р. 179–187. https://doi.org/10.1016/S0304-386X(98)00012-7.
16. Gao Xingbao, Wang Wei, Ye Tunmin, Wang Feng, Lan Yuxin. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate // Journal of Environmental Management. 2008. Vol. 88. Iss. 2. Р. 293–299. https://doi.org/10.1016/j.jenvman.2007.02.008.
17. Ruiz O., Clemente C., Alonso M., Alguacil F.J. Recycling of an electric arc furnace flue dust to obtain high grade ZnO // Journal of Hazardous Materials. 2007. Vol. 141. Iss. 1. Р. 33–36. https://doi.org/10.1016/j.jhazmat.2006.06.079.
18. Patent no. 5912402A, United States of America. Metallurgical dust recycle process / W.F. Drinkard, Jr.H.J. Woerner. Filed 30.10.1995; publ. 15.06.1999.
19. Паньшин А.М., Шакирзянов Р.М., Избрехт П.А., Затонский А.В. Основные направления совершенствования производства цинка на ОАО «Челябинский цинковый завод» // Цветные металлы. 2015. № 5. С. 19–21. https://doi.org/10.17580/tsm.2015.05.03.
20. Li Chung-Lee, Tsai Min-Shing. A crystal phase study of zinc hydroxide chloride in electric-arc-furnace dust // Journal of Materials Science. 1993. Vol. 28. Iss. 17. P. 4562–4570. https://doi.org/10.1007/BF00414243.
21. Kemp D., Bond C.J., Franks D.M., Cote C. Mining, water and human rights: making the connection // Journal of Cleaner Production. 2010. Vol. 18. Iss. 15. Р. 1553–1562. https://doi.org/10.1016/j.jclepro.2010.06.008.
22. Machado J.G.M.S., Brehm F.A., Moraes C.A.M., Santos C.A., Vilela A.C.F., Cunha J.B.M. Char-acterization study of electric arc furnace dust phases // Materials Research. 2006. Vol. 136. Iss. 3. P. 953–960. https://doi.org/10.1590/S151614392006000100009.
23. Найманбаев М.А., Лохова Н.Г., Балтабекова Ж.А., Баркытова Б.Н. О возможности переработки цинксодержащих пылей ЗСМК и Северстали с рудой месторождения Шаймерден // Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований: тр. III Конгр. с междунар. участием и Конференции молодых ученых V Форума «Уральский рынок лома, промышленных и коммунальных отходов» (г. Екатеринбург, 5–9 июня 2017 г.). Екатеринбург: УрО РАН, 2017. С. 178–182.
24. Cruells M., Roca A., Núnẽz C. Electric arc furnace flue dusts: characterization and leaching with sulphuric acid // Hydrometallurgy.1992. Vol. 31. Iss. 3. P. 213–231. https://doi.org/10.1016/0304-386X(92)90119-K
25. Снурников А.П. Гидрометаллургия цинка. М.: Металлургия, 1981. 384 р.
26. Wang Yurong, Zhou Yang, Wang Wenchang, Chen Zhidong. Sustained deposition of silver on copper surface from choline chloride aqueous solution // Journal of the Electrochemical Society. 2013. Vol. 160. Iss. 3. Р. D119-D123. https://doi.org/10.1149/2.012304jes.
27. Jian Wen. Study on the choice of dechlorination in the production of electric zinc of Jinshi metallurgy chemical plant // Hunan Nonferrous Metall. 2008. Vol. 24. Р. 34–36.
28. Yan Huan, Chai Li-yuan, Peng Bing, Li Mi, Peng Ning, Hou Dong-ke. A novel method to recover zinc and iron from zinc leaching residue // Minerals Engineering. 2014. Vol. 55. P. 103–110. https://doi.org/10.1016/j.mineng.2013.09.015.
29. Козлов П.А., Затонский А.В., Паньшин А.М. Исследования и разработка технологии по удалению примесей из вельц-окиси, полученной после переработки пылей электродуговых печей (ЭДП) // Металлургия-интехэко-2011: матер. IV Междунар. конф. (г. Москва, 29–30 марта 2011 г.). М., 2012. С. 126–131.
30. Havlik T., Turzakova M., Stopić S., Friedrich B. Atmospheric leaching of EAF dust with diluted sulphuric acid // Hydrometallurgy. 2005. Vol. 77. Iss. 1. P. 41–50. https://doi.org/10.1016/j.hydromet.2004.10.008.
31. Fleischanderl A., Gennari U., Ilie A. ZEWA metallurgical process for treatment of residues from steel industry and other industrial sectors to generate valuable products // Ironmaking & Steelmaking. 2004. Iss. 6. P. 444–449. https://doi.org/10.1179/irs.2004.31.6.444.
32. Silva R., Rubio J. Treatment of acid mine drainage (AMD) from coal mines in south Brazil // International journal of coal preparation and utilization. 2009. Vol. 29. Iss. 4. Р. 192–202. https://doi.org/10.1080/19392690903066045.
33. Zhao Hua-Zhang, Liu Chuan, Xu Yi, Ni Jin-Ren. High-concentration polyaluminum chloride: Preparation and effects of the Al concentration on the distribution and transformation of Al species // Chemical Engineering Journal. 2009. Vol. 155. Iss. 1-2. Р. 528–533. https://doi.org/10.1016/j.cej.2009.08.007.
34. Sdiri A., Higashi T., Jamoussi F., Bouaziz S. Effect of impurities on the removal of heavy metals by natural limestones in aqueous systems // Journal of Environmental Management. 2012. Vol. 93. Iss. 1. P. 245–253. https://doi.org/10.1016/j.jenvman.2011.08.002.
35. Kameda T., Yoshioka T., Mitsuhashi T., Uchida M., Okuwaki A. The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide // Water Resources. 2003. Vol. 37. 16. Р. 4045– 4050. https://doi.org/10.1016/S0043-1354(03)00311-7.
36. Liang C, Maruyama T, Ohmukai Yo., Sotani T, Matsuyama H. Characterization of random and multiblock copolymers of highly sulfonated poly(arylene ether sulfone) for a proton-exchange membrane // Journal of Applied Polymer Science. 2009. Vol. 114. Iss. 3. Р. 1793–1802. https://doi.org/10.1002/app.30658.
37. Lv Liang, He Jing, Wei Min, Evans D.G., Duan Xue. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies // Water Research. 2006. Vol. 40. Iss. 4. Р. 735–743. https://doi.org/10.1016/j.watres.2005.11.043.
38. Клеоновский М.В., Шешуков О.Ю., Михеенков М.А., Лозовая Е.Ю. Термодинамическое моделирование восстановления цинка из шламов черной металлургии // Известия вузов. Черная металлургия. 2022. Т. 65. № 3. С. 170–178. https://doi.org/10.17073/0368-0797-2022-3-170-178.
39. Dardel F., Arden T.V. Ion exchangers // Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, 2003. https://doi.org/10.1002/14356007.a14_393.
40. Dron J., Dodi A. Comparison of adsorption equilibrium models for the study of Cl−, NO3− and SO42− removal from aqueous solutions by an anion exchange resin // Journal of Hazardous Materials. 2011. Vol. 190. Iss. 1-3. Р. 300–307. https://doi.org/10.1016/j.jhazmat.2011.03.049.
41. Wei Liu-Ying, Ye Guozhu, White J. Association of halogens in electric arc furnace dust and zinc oxide fume before and after leaching // REWAS'99: Global Symposium on Recycling, Waste Treatment and Clean Technology (San Sebastian, 1999). San Sebastian: Malmö University, 1999. Vol. 2. P. 1503–1510.
42. Ito R., Fujita T., Sadaki J., Matsumoto Y., Ahn J.-W. Removal of chloride in bottom ash from the industrial and municipal solid waste incinerators // International Journal of the Society of Materials Engineering for Resources. 2006. Vol. 13. Iss. 2. Р. 70–74. https://doi.org/10.5188/ijsmer.13.70.
43. Aubert J.E., Husson B., Saramone N. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement: Part 2. Mechanical strength of mortars and environmental impact // Journal of Hazardous Materials. 2007. Vol. 146. Iss. 1-2. Р. 12–19. https://doi.org/10.1016/j.jhazmat.2006.11.044.
44. Saikia N., Mertens G., Balen K.V., Elsen J., Gerven T.V., Vandecasteele C. Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar // Construction and Building Materials. 2015. Vol. 96. Р. 76–85. https://doi.org/10.1016/j.conbuildmat.2015.07.185.
45. Joseph A.M., Snellings R., Heede P.V.D., Matthys S., Belie N.D. The use of municipal solid waste incineration ash in various building materials: a Belgian point of view // Materials (Basel). 2018. Vol. 11. Iss. 1. Р. 141. https://doi.org/10.3390/ma11010141.
46. Toro M.А., Calmano W., Ecke H. Wet extraction of heavy metals and chloride from MSWI and straw combustion fly ashes // Waste Management. 2009. Vol. 29. Iss. 9. Р. 2494–2499. https://doi.org/10.1016/j.wasman.2009.04.013.
47. Dontriros S. Likitlersuang S. Janjaroen D. Mechanisms of chloride and sulfate removal from municipal-solid-wasteincineration fly ash (MSWI FA): Effect of acid-base solutions // Waste Management. 2020. Vol. 101. Р. 44–53. https://doi.org/10.1016/j.wasman.2019.09.033.
48. Rahmani A., Moradkhani D. Karami E. Rahmani A., Mousavinezhad S.K. Chloride removal from industrial soils and zinc slag in zinc production factories by sodium metabisulfite and copper(ii) sulfate // Transactions of the Indian Institute of Metals. 2019. Vol. 72. Iss. 3. Р. 645–650. https://doi.org/10.1007/s12666-018-1514-6.
49. Shanmugasundaram M., Sudalaimani K. A study on natural adsorbents for the removal of chloride ion in water // International Journal of English Research and Technology. 2012. Vol. 1. Iss. 5. https://doi.org/10.17577/IJERTV1IS5306.
50. Kumar L., Singh S.K. Column study for chloride removal from waste water by a low cost adsorbent (bio adsorbent) // International Journal of English Research Science Innovative Technology. 2017. Vol. 6. Р. 31–41.
51. Apte S.S., Apte S.S., Kore V.S., Kore S.V. Chloride removal from wastewater by biosorption with the plant biomass // Universal Journal of Environmental. Research Technology. 2011. Vol. 1. Iss. 4. Р. 416–422.
52. Rahman M.A., Ahsan Sh., Kaneco S., Katsumata H., Suzuki T., Ohta K. Wastewater treatment with multilayer media of waste and natural indigenous materials // Journal of Environmental Management. 2005. Vol. 74. Iss. 2. Р. 107–110. https://doi.org/10.1016/j.jenvman.2004.08.012.
53. Iakovleva E., Mäkilä E., Salonen J., Sitarz M., Sillanpää M. Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water // Chemical Engineering Journal. 2015. Vol. 259. Р. 364–371. https://doi.org/10.1016/j.cej.2014.07.091.
54. Wang Xuewen, Du Yanping, Yang Haoxiang, Tian Shenghui, Ge Qi, Huang Sheng, Wang Mingyu. Removal of chloride ions from acidic solution with antimony oxides // Journal of Industrial and Engineering Chemistry. 2021. Vol. 93. Р. 170–175. https://doi.org/10.1016/j.jiec.2020.09.020.
55. Kolics A., Polkinghorne J.C., Wieckowski A. Adsorption of sulphate and chloride ions on aluminum // Electrochimica Acta. 1998. Vol. 43. Iss. 18. Р. 2605–2618. https://doi.org/10.1016/S0013-4686(97)10188-8.
56. Dabrowski A. Adsorption – from theory to practice // Advances in Colloid and Interface Science. 2001. Vol. 93. Iss. 13. Р. 135–224. https://doi.org/10.1016/S0001-8686(00)00082-8.
57. Lv Liang, Sun Peide, Gu Zhengyu, Du Hangeng, Pang Xiangjun, Tao Xiaohong, et al. Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger // Journal of Hazardous Materials. 2009. Vol. 161. Iss. 2-3. Р. 1444–1449. https://doi.org/10.1016/j.jhazmat.2008.04.114.
58. Lv Liang. Adsorption behaviour of calcined layered double hydroxides towards removal of fluoride from aqueous solution // Journal of Water Supply: Research and Technology-Aqua. 2005. Vol. 55. Iss. 6. Р. 413–418. https://doi.org/10.2166/aqua.2006.026.
59. Zhang Duchao, Zhang Xinwang, Yang Tianzu, Rao Shuai, Hu Wei, Liu Weifeng, et al. Selective leaching of zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems. Hydrometallurgy. 2017. Vol. 169. Р. 219–228. https://doi.org/10.1016/j.hydromet.2017.02.003.
60. Kameda T., Miyano Y., Yoshioka T., Uchida M., Okuwaki A. New treatment methods for waste water containing chloride ion using magnesium-aluminum oxide // Chemistry Letters. 2000. Iss. 10. Р. 1136–1137. https://doi.org/10.1246/cl.2000.1136.
61. Kameda T, Oba J., Yoshioka T. Simultaneous removal of Cland SO42from seawater using Mg-Al oxide: kinetics and equilibrium studies // Applied Water Science. 2017. Vol. 7. Iss. 1. Р. 129–136. https://doi.org/10.1007/s13201-0140224-4.
62. Kameda T., Yoshioka T., Hoshi T., Uchida M., Okuwaki A. The removal of chloride from solutions with various cations using magnesium-aluminum oxide // Separation and Purification Technology. 2005. Vol. 42. Iss. 1. Р. 25–29. https://doi.org/10.1016/j.seppur.2004.05.010.
63. Patent no. 4379037, United States of America. Removal of manganese and chloride ions from aqueous acidic zinc sulphate solutions / G.L. Bolton, V.B. Sefton, N. Zubryckyj. Filed 08.06.1981; publ. 05.04.2000.
64. Patent no. 103060561, China. A method of removing chloride from zinc sulfate solution / Y. Luo. Filed 15.01.2013; publ. 22.10.2014.
65. Selwyn L.S., Argyropoulos V. Removal of chloride and iron ions from archaeological wrought iron with sodium hydroxide and ethylenediamine solutions // Studies in Conservation. 2005. Vol. 50. Iss. 2. Р. 81–100. https://doi.org/10.1179/sic.2005.50.2.81.
66. Krom M.D, Ben David A., Ingall E.D., Benning L.G., Clerici S., Bottrell S., et al. Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a “zero-discharge” recirculating mariculture system // Water Research. 2014. Vol. 56. Р. 109–121. https://doi.org/10.1016/j.watres.2014.02.049.
67. Hu Yihang, Wang Haibei, Wang Yufang, Wang Honggang. Simultaneous removal of fluorine and chlorine from zinc sulfate solution in iron precipitation process // Journal of Sustainable Metallurgy. 2018. Vol. 4. Р. 95–102. https://doi.org/10.1007/s40831-017-0154-0.
68. Dabrowski A., Hubicki Z., Podkoscielny P., Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method // Chemosphere. 2004. Vol. 56. Iss. 2. Р. 91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006.
69. Zhu Bintuan, Clifford D.A., Chellama S. Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes // Water Research. 2005. Vol. 39. Iss. 13. P. 3098–3108. https://doi.org/10.1016/j.watres.2005.05.020.
70. Yeo J.-H., Choi J.-H. Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode // Desalination. 2013. Vol. 320. Р. 10–16. https://doi.org/10.1016/j.desal.2013.04.013.
71. Paz-Garcia J.M., Johannesson B., Ottosen L.M., Ribeiro A.B., Rodrigues-Maroto J.M. Simulation-based analysis of the differences in the removal rate of chlorides, nitrates and sulfates by electrokinetic desalination treatments // Electrochimica Acta. 2013. Vol. 89. Р. 436–444. https://doi.org/10.1016/j.electacta.2012.11.087.
72. Liu Weizao, Zhang Renyuan, Liu Zhongqing, Li Chun. Removal of chloride from simulated zinc sulfate electrolyte by ozone oxidation // Hydrometallurgy. 2016. Vol. 160. Р. 147–151. https://doi.org/10.1016/j.hydromet.2015.12.006.
73. Gärtner R.S., Wilhelm F.G., Witkamp G.J., Wessling M. Regeneration of mixed solvent by electrodialysis: selective removal of chloride and sulfate // Journal of Membrane Science. 2005. Vol. 250. Iss. 1-2. Р. 113–133. https://doi.org/10.1016/j.memsci.2004.10.022
74. Patent no. 4715939, United States of America. Method for removal of monovalent ions from ZnSO4 electrolyte by electrodialysis / D.L. Ball, D.A.D. Boateng. Filed 02.04.1987; publ. 21.04.2007.
75. Patent no. 103572051, China. Dechlorination method of zinc sulfate solution / J. Wu. Filed 15.11.2013; publ. 12.02.2014.
76. Malaisamy R., Talla-Nwafo A., Jones K.L. Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions // Separation and Purification Technology. 2011. Vol. 77. Iss. 3. Р. 367–374. https://doi.org/10.1016/j.seppur.2011.01.005.
77. Sata T., Sata T. Ion exchange membranes: preparation, characterization, modification and application. EngineeringPro collection. Tokuyama: Royal Society of Chemistry, 2004. 314 р.
78. Mohammad A.W., Teow Y.H., Ang W.L., Chung Y.T., Oatley-Radcliffe D.L., Hilal N. Nanofiltration membranes review: recent advances and future prospects // Desalination. 2015. Vol. 356. Р. 226–254. https://doi.org/10.1016/j.desal.2014.10.043.
79. Chmielarz A., Gnot W. Conversion of zinc chloride to zinc sulphate by electrodialysis – a new concept for solving the chloride ion problem in zinc hydrometallurgy // Hydrometallurgy. 2001. Vol. 61. Iss. 1. Р. 21–43. https://doi.org/10.1016/S0304-386X(01)00153-0.
80. Xiao Hui-Fang, Chen Qing, Cheng Huan, Li Xiu-Min, Qin Wen-Meng, Chen Bao-Sheng, et al. Selective removal of halides from spent zinc sulfate electrolyte by diffusion dialysis // Journal of Membrane Science. 2017. Vol. 537. Р. 111– 118. https://doi.org/10.1016/j.memsci.2017.05.009.
81. Nemchinova N.V., Chernykh V.E., Tyutrin A.A., Patrushov A. E. Extraction of zinc and iron from electrosmelting dust // Steel in Translation. 2016. Vol. 46. Iss. 5. Р. 368–372. https://doi.org/10.3103/S0967091216050090.
82. Kuhn J.M., Mason C.R.S., Harlamovs J.R., Bell M.W., Buchalter E.M. Piloting of the halogontm process with mixersettlers and Bateman pulsed columns // Hydrometallurgy 2003 – Fifth International Conference in Honor of Professor Ian Ritchie (Vancouver, 24–27 August 2003). Vancouver, 2003. Vol. 1 . P. 777–786.
83. Mason C.R.S., Grinbaum B., Harlamovs J.R., Dreisinger G.B. Solvent extraction of halides from metallurgical solutions. In: Hydrometallurgy 2003: Proceedings of the 5th International Symposium Honoring Professor Ian M. Ritchie (Vancouver, 24–27 August 2003). Vancouver, 2003. Vol. 1 . P. 765–776.
84. Daiga V.R., Home D.A. Production of crude zinc oxide from steel mill waste oxides using a rotary health furnace // Recycling of Metals and Engineered Materials / eds. D.L. Stewart, J.C. Daley, R.L. Stephens. Warrendale: TMS, 2000. P. 361–368. https://doi.org/10.1002/9781118788073.ch31.
85. Fleitlikh I.Y., Grigorieva N.A., Nikiforova L.K., Logutenko O.A. Purification of zinc sulfate solutions from chloride usi ng extraction with mixtures of a trialkyl phosphine oxide and organophosphorus acids // Hydrometallurgy. 2017. Vol. 169. Р. 585–588. https://doi.org/10.1016/j.hydromet.2017.04.004.
86. Peng Xianjia, Dou Wenyue, Kong Linghao, Hu Xingyun, Wang Xianliang. Removal of chloride ions from strongly acidic wastewater using Cu(0)/Cu(II): efficiency enhancement by UV irradiation and the mechanism for chloride ions removal // Journal of Environmental Science and Technology. 2019. 53. Р. 383–389. https://doi.org/10.1021/acs.est.8b05787.
87. Dou Wenyue, Hu Xingyun, Kong Linghao, Peng Xianjia. UV-improved removal of chloride ions from strongly acidic wastewater using Bi2O3: efficiency enhancement and mechanisms // Journal of Environmental Science and Technology. 2019. Vol. 53. Iss. 17. Р. 10371–10378. https://doi.org/10.1021/acs.est.9b03296.
88. Haag W.R., Hoigné J. Ozonation of water containing chlorine or chloramines. Reaction products and kinetics // Water Resource. 1983. Vol. 17. Iss. 10. Р. 1397–1402. https://doi.org/10.1016/0043-1354(83)90270-1.
89. Hoigné J., Bader H., Haag W.R., Staehelin J. Rate constants of reactions of ozone with organic and inorganic compounds in water—III. Inorganic compounds and radicals // Water Resource. 1985. Vol. 19. Iss. 8. Р. 993–1004. https://doi.org/10.1016/0043-1354(85)90368-9.
90. Razumovskii S.D., Konstantinova M.L., Grinevich T.V., Korovina G.V., Zaitsev V.Y. Mechanism and kinetics of the reaction of ozone with sodium chloride in aqueous solutions // Kinetics and Catalysis. 2010. Vol. 51. Iss. 4. Р. 492–496. https://doi.org/10.1134/S0023158410040051.
91. Razumovskii S., Korovina G., Grinevich T. Mechanism of the first step of ozone decomposition in aqueous solutions of sodium chloride in view of new data on the composition of reaction products // Doklad Physical Ch emistry. Cham: Springer, 2010. Vol. 434. Iss. 2. Р. 163–165. https://doi.org/10.1134/S0012501610100027.
92. Levanov A.V., Kuskov I.V., Koiaidarova K.B., Zosimov A.V, Antipenko E.E., Lunin V.V. Catalysis of the reaction of ozone with chloride Ions by metal Ions in an acidic medium // Kinetics and Catalysis. 2005. Vol. 46. Iss. 1. Р. 138–143. https://doi.org/10.1007/s10975-005-0021-z.
93. Levanov A.V., Kuskov I.V., Koiaidarova K.B., Antipenko E.E., Lunin V.V. Interaction between ozone and the chloride ion in sulfuric acid solutions up to 6-M concentration // Kinetics and Catalysis. 2006. Vol. 47. Iss. 5. Р. 682–685. https://doi.org/10.1134/S0023158406050053.
94. Levanov A.V., Kuskov I.V., Antipenko E.E., Lunin V.V. The oxidation of chlorine ions under the joint action of ozone and permanganate ions // Russian Journal of Physical Chemistry. 2006. Vol. 80. Iss. 4. Р. 557 –561. https://doi.org/10.1134/S0036024406040121.
95. Levanov A.V., Kuskov I.V., Antipenko E.E., Lunin V.V. Stoichiometry and products of ozone reaction with chloride ion in an acidic medium // Russian Journal of Physical Chemistry. 2012. Vol. 86. Iss. 5. Р. 757–762. https://doi.org/10.1134/S0036024412050202.
96. Jacobsen F., Holcman J., Sehested K. Oxidation of manganese (II) by ozone and reduction of manganese (III) by hydrogen peroxide in acidic solution // Journal of Chemical Kinetics. 1998. Vol. 30. Iss. 3. Р. 207 –214. https://doi.org/10.1002/(SICI)1097-4601(1998)30:3<207::AID-KIN6>3.0.CO;2-W.
97. Reisz E., Leitzke A., Jarocki A., Irmscher R., von Sonntag C. Permanganate formation in the reactions of ozone with Mn(II), a mechanistic study // Journal of Water Supply Resources Technology AQUA. 2008. Vol. 57. Iss. 6. Р. 451–464. https://doi.org/10.2166/aqua.2008.091.
98. Dou Wenyue, Hu Xingyun, Kong Linghao, Peng Xianjia, Wang Xianliang. Removal of Cl(−I) from strongly acidic wastewater using NaBiO3: A process of simultaneous oxidation and precipitation // Desalination. 2020. Vol. 491. Р. 114566. https://doi.org/10.1016/j.desal.2020.114566.
99. Hu Jiajia, Xu Guangqing, Wang Jinwen, Lv Jun, Zhang Xinyi, Xie Ting, et al. Photocatalytic property of a Bi2O3 nanoparticle modified BiOCl composite with a nanolayered hierarchical structure synthesized by in situ reactions // Dalton Transactions. 2015. Iss. 12. Р. 5386–5395.
100. Huang Shouqiang, Li Liang, Zhu Nanwen, Lou Ziyang, Liu Weiqiao, Cheng Jiehong, et al. Removal and recovery of chloride ions in concentrated leachate by Bi(III) containing oxides quantum dots/two-dimensional flakes // Journal of Hazardous Materials. 2020. Vol. 382. Р. 121041. https://doi.org/10.1016/j.jhazmat.2019.121041.
101. Shan Lian-wei, Wang Gui-lin, Liu Li-zhu, Wu Ze. Band alignment and enhanced photocatalytic activation for αBi2O3/BiOCl (001) core-shell heterojunction // Journal of Molecular Catalysis A: Chemical. 2015. Vol. 406. Р. 145–151. https://doi.org/10.1016/j.molcata.2015.05.024.
102. Ike I.A., Linden K.G., Orbell J.D., Duke M. Critical review of the science and sustainability of persulphate advanced oxidation processes // Chemical Engineering Journal. 2018. Vol. 338. Р. 651–669. https://doi.org/10.1016/j.cej.2018.01.034.
103. Lutze H.V., Kerlin N., Schmidt T.C. Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate // Water Resources. 2015. Vol. 72. Р. 349–360. https://doi.org/10.1016/j.watres.2014.10.006.
104. Wacławek S., Lutze H.V., Grübel K., Padil V.V.T., Cˇerník M., Dionysiou D.D. Chemistry of persulfates in water and wastewater treatment: a review // Chemical Engineering Journal. 2017. Vol. 330. Р. 44 –62. https://doi.org/10.1016/j.cej.2017.07.132.
105. Wang Jianlong, Wang Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants // Chemical Engineering Journal. 2018. Vol. 334. Р. 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059.
106. Hu Xingyun, Zhu Feng, Kong Linghao, Peng Xianjia. Sulfate radical-based removal of chloride ion from strongly acidic wastewater: kinetics and mechanism // Journal of Hazardous Materials. 2021. Vol. 410. Р. 124540. https://doi.org/10.1016/j.jhazmat.2020.124540.
107. Patent no. 4698139, United States of America. Hydrometallurgical method for treating valuable metal raw materials containing chloride and fluorides / S.P. Fugleberg, J.I. Poijarvi. Filed 06.10.1987; publ. 12.10.2004.
Рецензия
Для цитирования:
Блудова Д.И., Мамяченков С.В., Анисимова О.С. Методы удаления хлорид-ионов при производстве цинка из пыли электродуговой плавки. iPolytech Journal. 2023;27(2):392-421. https://doi.org/10.21285/1814-3520-2023-2-392-421
For citation:
Bludova D.I., Mamyachenkov S.V., Anisimova O.S. Methods for removing chloride ions to manufacture zinc from arc melting dust. iPolytech Journal. 2023;27(2):392-421. (In Russ.) https://doi.org/10.21285/1814-3520-2023-2-392-421