Selection of an optimal cable brand for high-voltage overhead power lines based on criterion analysis
https://doi.org/10.21285/1814-3520-2023-2-339-353
Abstract
This paper is aimed at developing a versatile approach to selecting an optimal cable brand for overhead transmission lines for use in design practice, adapted to conventional and new-generation cable types. To implement multi-criterion evaluation of external factors and limitations when selecting a cable type, the methods of systems, hierarchy and comparative analysis were used. A method for selecting an optimal cable brand based on hierarchy analysis was developed along with an algorithm for its implementation when designing new or modernizing existing overheadlines. The developed approach is demonstrated on the example of construction and modernization of 220 kV overhead lines with the conventional AC cable and such new-generation domestic brands, as АСВТ, АСВП, АСк2у and АСТ. In the considered examples, the technical feasibility of the construction of a new overhead line was limited by the value of the sag. For the modernization project, the specific weight of the cable was of greater importance. The selection criteria included the span length, cable cost and admissible continuous current. The АСВП and АСТ cable brands showed the greatest compliance with the selection criteria (27.5% and 55.9%, respectively). Therefore, at minimum capital investments, the АСВП brand ensures the optimum span length in the construction of a new overhead line, whereas the ACT brand ensures the maximum capacity in the modernization of an existing line. The conducted verification calculations confirmed the feasibility and versatility of the proposed method for selecting a cable brand.
About the Authors
N. V. SavinaRussian Federation
Natalia V. Savina - Dr. Sci. (Eng.), Professor, Head of the Department of Power Engineering.
21, Ignatyevskoye Shosse, Blagoveshchensk, 675028
A. О. Varygina
Russian Federation
Aleksandra О. Varygina - Postgraduate Student.
21, Ignatyevskoye Shosse, Blagoveshchensk, 675028
References
1. Varygina A.O., Savina N.V. Assessing application feasibility of a new conductor generation on overhead lines. Sovremennye tekhnologii: aktual'nye voprosy, dostizheniya i innovacii: sbornik statej X Mezhdunarodnoj nauchnoprakticheskoj konferencii = Modern technologies: topical issues, achievements and innovations: collected articles of 10th International scientific and practical conference. 27 October 2017. Penza: Nauka i Prosveshchenie, 2017. S. 50–55.
2. Pekhteleva V.R., Osminkin E.D., Shevchenko N.Yu. New generation of wires produced in Russia. Innovacii v nauke i praktike: materialy XIII Mezhdunarodnoj nauchno-prakticheskoj konferencii = Innovations in science and practice: materials of 13th International scientific and practical conference. 26 December 2018, Barnaul. Ufa: Dendra; 2018, part 1, р. 225-230. (In Russ.).
3. Timashova L.V., Nikiforov E.P., Nazarov I.A., Merzlyakov A.S., Ermoshina M.S., Kachanovskaya L.I., et al. New conductor types application for overhead transmission lines. Energiya edinoj seti. 2014;5:6-14. (In Russ.).
4. Vasyura Yu.F., Glazyrin M.A., Pleshkova T.A. Economic feasibility of power line construction using wires with improved characteristics Alleya nauki. 2017;2(15):647-650. (In Russ.).
5. Reddy S.B., Mitra G. Investigations on high temperature Low Sag (HTLS) conductors. IEEE Transactions on Power Delivery. 2020;35(4):1716-1724. https://doi.org/10.1109/TPWRD.2019.2950992.
6. Hadzimuratovic S., Fickert L. Impact of gradually replacing old transmission lines with advanced composite conductors. In: IEEE PES Innovative Smart Grid Technologies Conference Europe. 2018. https://doi.org/10.1109/ISGTEurope.2018.8571614.
7. Lew J. Aluminum-calcium composite conductors: the future of America's power grid. In: IEEE MIT Undergraduate Research Technology Conference. 2020. https://doi.org/10.1109/URTC51696.2020.9668908.
8. Dolgopol T.L., Mishin D.S. Improving reliability of overhead transmission lines. In: Energetika i energosberezhenie: teoriya i praktika: sbornik materialov IV Vserossijskoj nauchno-prakticheskoj konferencii = Energy and Energy Saving: Theory and Practice: collected materials of 4th All-Russian scientific and practical conference. 19–21 December 2018, Kemerovo. Kemerovo: Kuzbasskij gosudarstvennyj tekhnicheskij universitet imeni T.F. Gorbacheva; 2018, р. 220.1220.5.
9. Lensky S.V., Lee V.N. Study of the phenomenon of icing generation on the wires of power lines and ways of dealin g with IT. Nauchno-tekhnicheskoe i ekonomicheskoe sotrudnichestvo stran ATR v XXI veke. 2018;1:185-189.
10. Nefedov A.S. Comparative analysis of the ELECTRE III method and the hierarchy analysis for solving multicriteria problems. Trudy Bratskogo gosudarstvennogo universiteta. Seriya: Estestvennye i inzhenernye nauki. 2018;2:9-15. (In Russ.).
11. Naumov A.E., Shchenyatskaya M.A. Practical issues of using the analytic hierarchy process in multi-criteria analysis of portfolio alternatives. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V. G. Shuhova = Bulletin of BSTU named after V. G. Shukhov. 2017;1:223-227. (In Russ.). https://doi.org/10.12737/24127.
12. Saaty T.L. The analytic hierarchy process. New York: McGraw-Hill International; 1980, 150 p.
13. Manusov V.Z., Orlov D.V., Frolova V.V. Diagnostics of technical state of modern transformer equipment using the analytic hierarchy process. In: IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe. 2018. https://doi.org/10.1109/EEEIC.2018.8493904.
14. Elmahmoudi F., Abra O.E.K., Raihani A., Serrar O., Bahatti L. GIS based fuzzy analytic hierarchy process for wind energy sites selection in Tarfaya Morocco. In: IEEE International Conference of Moroccan Geomatics. 2020. https://doi.org/10.1109/Morgeo49228.2020.9121921.
15. Hai-bo Su, Min-chuan Liao, Lu Qu, Han-sheng Cai, Yu Zhang, Rui-fa Feng. Application of comprehensive evaluation for lightning protection scheme in distribution line on analytic hierarchy process. In: 6th Asia Conference on Power and Electrical Engineering. 8–11 April 2021, Chongqing. Chongqing: IEEE; 2021, р. 152-157. https://doi.org/10.1109/ACPEE51499.2021.9436987.
16. Yu Hong, Ma Yi, Wang Longfei, Zhai Yongsai, Du Zhijie. A method for evaluating the rescue priority level of power line post-disaster based on AHP. In: IEEE International Conference on Mechatronics and Automation. 6–9 August 2017, Takamatsu. Takamatsu: IEEE; 2017, p. 35-39. https://doi.org/10.1109/ICMA.2017.8015784.
17. Lin Zhiling, Gao Liqun, Zhang Dapeng, Ren Ping, Li Yang. Application of analytic hierarchy process in power lines maintenance. In: 6th World Congress on Intelligent Control and Automation. 21–23 June 2006, Dalian. Dalian: IEEE; 2006, р. 7596-7599. https://doi.org/10.1109/WCICA.2006.1713443.
18. Latypova V.A. A comparative analysis and a choice of tools implementing analytic hierarchy process. Modelirovanie, optimizaciya i informacionnye tekhnologii. 2018;6(4):322-347. (In Russ.). https://doi.org/10.26102/23106018/2018.23.4.024.
19. Kur'yanov V.N., Shvec E.S., Timashova L.V., Fokin V.A. Application of innovative domestic high -temperature ASVT wires for 110 kV overhead lines and their efficiency. Energiya edinoj seti. 2017;5:12-18. (In Russ.).
20. Vasyura Yu.F., Glazyrin M.A., Pleshkova T.A., Cherepanova G.A. Evaluating economic feasibility of high-voltage power line construction using new generation of wires. Izvestiya vysshih uchebnyh zavedenij. Elektromekhanika. 2014;3:71-74. (In Russ.).
Review
For citations:
Savina N.V., Varygina A.О. Selection of an optimal cable brand for high-voltage overhead power lines based on criterion analysis. iPolytech Journal. 2023;27(2):339-353. (In Russ.) https://doi.org/10.21285/1814-3520-2023-2-339-353