Analysis of methods for monitoring the technical condition of high-voltage electronic measuring transformers
https://doi.org/10.21285/1814-3520-2023-2-322-338
Abstract
The objectives of the present study included an analysis of statistical data on the failure causes of highvoltage equipment with a particular focus on current and voltage measuring transformers; a study of factors affecting the technical and functional condition of measuring transformers; a review of available methods for monitoring the technical condition of high-voltage electronic measuring transformers; the development of the basic principles of a stationary system for monitoring the technical capabilities of electronic measuring transformers. A review of available scientific publications and copyright objects on the aforementioned problems was conducted. The results were processed using the principles of systematic approach, as well as induction, deduction, classification and abstraction methods. The existing methods for monitoring the technical condition of high-voltage electronic measuring transformers were analyzed. The influence of various regimes and external factors on the technical and functional state of measuring transformers was investigated. The main principles for developing a stationary system for monitoring the technical condition of electronic measuring transformers were formulated. It was established that the failure of measuring transformers in medium voltage networks accounts for 6% of all failures. In 110 kV and higher-voltage networks, this level reaches 7%. It was found that the majority of accidents is associated with damaged insulation, poor-quality manufacturing and installation of the equipment, the impact of operating parameters and external factors on the technical and functional state of measuring transformers. Based on the considered methods for monitoring the technical condition of high-voltage equipment, a functional scheme of a stationary system for monitoring the technical capabilities of electronic measuring transformers at a digital substation is proposed.
Keywords
About the Authors
S. N. LitvinovRussian Federation
Sergey N. Litvinov - Senior Lecturer of the Department of Power stations, Substations and Electrical Equipment Diagnostics.
34, Rabfakovskaya St., Ivanovo 153003
V. D. Lebedev
Russian Federation
Vladimir D. Lebedev - Cand. Sci. (Eng.), Associate Professor, Head of the Department of Automatic Control of Electric Power Systems.
34, Rabfakovskaya St., Ivanovo 153003
A. V. Gusenkov
Russian Federation
Aleksey V. Gusenkov - Cand. Sci. (Eng.), Associate Professor, Head of the Department of Power stations, Substations and Electrical Equipment Diagnostics.
34, Rabfakovskaya St., Ivanovo 153003
References
1. Wang Yu-duo, Dai Xiao-miao. A Ethernet interface solution based on TCP/IP protocol. In: IEEE 11th Inter-national Conference on Signal Processing. 2012;1521-1525. https://doi.org/10.1109/ICoSP.2012.6491863.
2. Zhijian Qu, Mingguang Liu, Zhiling Jiang, Feng Wu, Jing Liu, Lichao Sun. Study of communication gateway based on IEC61850 Protocol. In: International Conference on Communication Software and Networks. 2009;659-662. https://doi.org/10.1109/ICCSN.2009.17.
3. Adamiak M., Baigent D. IEC 61850 Communication networks and systems i n substations: an overview for users. The Protection & Control Journal. 2009;61-68.
4. Chichev S.I., Kalinin V.F., Glinkin E.I. Designing methodology of a digital sub-station based on new technologies. Moscow: Spektr; 2014, 228 p. (In Russ.).
5. Chichev S.I., Kalinin V.F., Glinkin E.I. Information and measuring system of the electric grid company. Moscow: Spektr; 2011, 156 p. (In Russ.).
6. Dorofeev I.N., Serrato A.E., Charkin A.V. Implementation of the protection and monitoring system of a digital substation based on the iSAS software package. Sovremennye napravleniya razvitiya sistem relejnoj zashchity i avtomatiki energosistem: sb. prezentacij uchastnikov IV Mezhdunarodnoj nauchno-tekhnicheskoj konferencii RNK Cigre = Modern development trends of power grid relay protection systems and automation: Collected presentations of the participants of the 4th International scientific and technical conference. RNC Cigre. 3–7 June 2013, Ekaterinburg. Ekaterinburg: Rossijskij nacional'nyj komitet SIGRE; 2013, р. 1-5. (In Russ.).
7. Vlasov M., Ivanov A., Kirillov A., Peregudov S., Serdtsev A. ACS with flexible dynamic architecture for digital substations. Elektroenergiya. Peredacha i raspredelenie = Electric Power. Transmission and distribution . 2012;5:92-96. (In Russ.).
8. Khrennikov A., Galiev I., Skrydlov E. Digital current transformers. Devices for current strength calculation. Novosti elektrotekhniki. 2015;6. Available from: http://www.news.elteh.ru/arh/2015/96/06.php [Accessed 9th January 2023].
9. Yanin M.A., Kanafeev R.I., Ivanov N.A., Shemetov A.S., Kozyrev A.V. Current results of pilot operation of electronic 500 kV CTs and VTs. Energoekspert. 2020;1:62-67. (In Russ.).
10. Serzhaskii V.P., Basmanovskii M.A. Analysis of the current state of meas uring current sensors, their advantages and disadvantages. Modern Science. 2019;12-1:613-617. (In Russ.).
11. Grabchak E.P., Bajkov I.A., Medvedeva E.A., Dunaev P.A. The main results of electric power facilities operation in 2016. The results of the autumn-winter period 2016–2017. Medium term tasks. 2017. Available from: https://minenergo.gov.ru/node/6575 [Accessed 9th January 2023]. (In Russ.).
12. Sayenko Y.L., Popov A.S. Investigation of the damage cause of the voltage transformers using for insulation checking. Energosberezhenie. Energetika. Energoaudit = Energy saving. Power engineering. Energy audit. 2011;7:59-66. (In Russ.).
13. Bogomolov V.S., Zikherman M.Kh., L'vov Yu.N., Nazarov I.A., Timashova L.V., Shleifman I.L., et al. Damageability of the main electrical equipment of 110-750 kV substations in the Russian Federation. Energiya edinoj seti = Energy of Unified Grid. 2013;2:14-21. (In Russ.).
14. Khrennikov A.Yu., Mazhurin R.V. Diagnostics and measures to reduce the accident rate of high-voltage current and voltage measuring transformers in electrical networks 110-750 kV. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika. 2013;1:52-54. (In Russ.).
15. Nechaev E.V., Yablokov A.A., Lebedev V.D. Development and research of a 6-10 kV resistive voltage divider. In: Nauka i innovatsii v tekhnicheskikh universitetakh: materialy Devyatogo Vserossiiskogo foruma studentov, aspirantov i molodykh uchenykh = Science and innovations in technical universities: materials of the Ninth All-Russian Forum of students, graduate students and young scientists. 27–30 October 2015, St. Petersburg. St. Petersburg; 2015, p. 31-33. (In Russ.).
16. Lylov P.V., Lebedev V.D., Fomichev A.A. Development and research of a system for transmitting digitized values of currents and voltages at a substation. In: ENERGIYa-2016: materialy XI Mezhdunarodnoj nauchno-tekhnicheskoj konferencii studentov, aspirantov i molodyh uchenyh =Energy – 2016: materials of the 11th International scientific and technical conference of students, postgraduates and young scientists. 5–7 April 2016, Ivanovo. Ivanovo; 2016, vol. 3, р. 31-33. (In Russ.).
17. Lebedev V.D., Yablokov A.A., Filatova G.A., Litvinov S.N., Panashchatenko A.V., Gotovkina E.E. Study of the characteristics and application prospects of digital current and voltage transformers. Elektroenergiya. Peredacha i raspredelenie = Electric Power. Transmission and distribution. 2018;2:22-27. (In Russ.).
18. Nechaev E.V., Shelud'ko M.V., Yablokov A.A. Study of the characteristics and optimization of the parameters of the current sensor of a digital measuring current transformer. In: Energiya-2017: materialy XII Mezhdunarodnoi nauchnotekhnicheskoi konferentsii studentov, aspirantov i molodykh uchenykh = Energy-2017: materials of the 12th International scientific and technical conference of students, postgraduates and young scientists. 4–6 April 2017, Ivanovo. Ivanovo; 2017, vol. 3, p. 31-33. (In Russ.).
19. Zagoskin R.I., Guk A.A. Operating experience of monitoring systems for high-voltage equipment at the facilities of the Federal Grid Company of the Unified Energy System (PAO "FSK EES"). Energiya edinoj seti = Energy of Unified Grid. 2016;5:48-54. (In Russ.).
20. Boyarshinov B.S., Khozhainova G.I. Aging and destruction of electrical insulation. In: Ekonomika i prakticheskii menedzhment v Rossii i za rubezhom: materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii = Economics and practical management in Russia and abroad: Proceedings of the International scientific and practical conference. 15 April 2014, Kolomna. Kolomna: Kolomna Institute, branch of the Moscow State Engineering University (MAMI); p. 225-227. (In Russ.).
21. Boyarshinov B.S., Khozhainova G.I. Experimental verification of Zhurkov-Dmitrevsky theory of dielectric insulation aging. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2010;316(2):107-109. (In Russ.).
22. Cesky L., Janicek F., Kubica J., Skudrik F. Overheating of primary and secondary coils of voltage instrument transformers. In: 18th International Scientific Conference on Electric Power Engineering. 2017. https://doi.org/10.1109/EPE.2017.7967359.
23. Akhmedova O.O., Gracheva M.N., Kiryuhina E.I. The modern development of the measuring current transformers for relay protection and automation in the energy sector. Energoi resursosberezhenie: Promyshlennost’ и transport = Energy and Resource Saving: Industry and Transport. 2016;5:47-51. (In Russ.).
24. Slavutskiy A. Accounting the residual magnetization in the transformer for the modeling of transients. Vestnik Chuvashskogo universiteta. 2015;1:122-130. (In Russ.).
25. Evdokunin G.A., Dmitriev M.V. Transients modeling in electrical steel containing transformers when taking into account their magnetic system configuration. Izvestiya Rossijskoj akademii nauk. Energetika = Thermal Engineering. 2009;2:37-48. (In Russ.).
26. Andreev D.V., Stolyarov A.A., Andreev V.V., Car'kov A.V. Study of irreversible degradation processes of the gate dielectric of metal-dielectric-semiconductor structures. Neobratimye processy v prirode i tekhnike: trudy X Vserossijskoj konferencii (gorod, chislo, mesyac provedeniya) = Irreversible processes in nature and technical equipment: proceeding of the 10th All-Russian conference. 29-31 January 2019, Moscow. Moscow: Moscow State Technical University named after N.E. Bauman; 2019, р. 114-117. (In Russ.).
27. Raetzke S., Koch M., Anglhuber M. Modern insulation condition assessment for instrument transformers. In: IEEE International Conference on Condition Monitoring and Diagnosis. 23–27 September 2012, Bali. Bali: IEEE; 2012, p. 5255. https://doi.org/10.1109/CMD.2012.6416177.
28. Wu Yan, Hu Yi-Fan, He Ri, Jiao Chong-Qing. Measurement and analysis of electromagnetic disturbance at the secondary side of electronic voltage transformer due to switching operations via a 6 kV switchgear. In: IEEE 5th International Symposium on Electromagnetic Compatibility. 2017. https://doi.org/10.1109/EMC-B.2017.8260347.
29. Suttner C., Tenbohlen S., Ebbinghaus W. Impact of Rogowski sensors on the EMC performance of medium voltage power substations. In: IEEE International Symposium on Electromagnetic Compatibility. 2015. https://doi.org/10.1109/ISEMC.2015.7256159.
30. Najdenov A.D. Optical current transformers. Vestnik nauki i obrazovaniya. 2020;8-1:19-23. (In Russ.).
31. Morozov A.N., Stepanov A.A., Malahov S.V., Ivanov V.V. Development and pilot operation of a fully optical threephase voltage transformer 220 kV with a digital output. Elektricheskie stancii. 2020;2:28-36. http://doi.org/10.34831/EP.2020.1063.2.005. (In Russ.).
32. Topol'skij D.V., Topol'skaya I.G. Digital substation automation system. Nauka YuUrGU: materialy 71-j nauchnoj konferencii = Science of the South Ural State University: materials of the 71st scientific conference. 10–12 April 2019, Chelyabinsk. Chelyabinsk: South Ural State University; 2019, р. 259-265. (In Russ.).
33. Morzhin Yu.I., Popov S.G., Rumyantsev A.A., Il'in M.D. Testing-field of “R&D FGC UES” – “Digital Substation”. Energiya edinoj seti = Energy of Unified Grid. 2014.3:16-25. (In Russ.).
34. Kur'yanov V.N., Kushch L.R., Gorbunova N.R., Bondarev I.V., Cypik V.V. Digital substations. Implementation experience. Nauka, obrazovanie i kul'tura. 2018;3:9-12. (In Russ.).
35. Vershinin Yu.N. Mechanism of electronic breakdown of solid dielectrics (evolution of ideas). Izvestiya rossiiskoi akademii nauk. Energetika = Proceedings of the Russian Academy of Sciences. Energy. No 2, 2003. pp. 152-157. (In Russ.)
36. Zarubin V.S., Savelyeva I.Yu., Stankevich I.V. The temperature state of a plane polymer dielectric layer with temperature-dependent heat conduction. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta imeni N.E. Baumana. Seriya: Estestvennye nauki. 2018;4:14-23. https://doi.org/10.18698/1812-3368-2018-4-14-23. (In Russ.).
37. Gefle O.S., Cherkashina E.I. Thermal effect-based trouble-shooting of the pre-breakdown state of polymeric dielectrics. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2005;308(1):54-59. (In Russ.).
38. Sobchuk N.V., Slobodyanyuk E.V. Determining the optimal value of the test voltage for effective insulation control. Nauchnye trudy Vinnickogo nacional'nogo tekhnicheskogo universiteta. 2016;2:70-74. (In Russ.).
39. Saushev A.V., Sherstnev D.A., Shirokov N.V. Analysis of the trouble-shooting methods for high-voltage devices. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova. 2017;9(5):1073-1085. (In Russ.).
40. Lisina L.F. Methods of testing and diagnostics of high-voltage equipment insulation. Vestnik Angarskoi gosudarstvennoi tekhnicheskoi akademii. 2014;8:61-65. (In Russ.).
41. Svi P.M. Methods and means of high voltage equipment diagnostics. Moscow: Energoatomizdat; 1992, 240 p. (In Russ.).
42. Svi P.M. Insulation control of high voltage equipment. Moscow: Energy; 1980, 112 p. (In Russ.).
43. Balobanov R.N., Zacarinnaya Yu.N. Features of trouble-shooting of high-voltage equipment with SF6 insulation. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2015;2(18):257-258. (In Russ.).
44. Agafonov G.E., Babkin I.V., Berlin B.E. Electrical devices of high voltage with SF6 insulation. St. Petersburg: Energoatomizdat; 2002, 728 р. (In Russ.).
45. Khalyasmaa A., Stepanova A., Eroshenko S., Bolgov V., Duc Chung T. The application of partial discharge monitoring system for instrument transformers: special issues. In: 21st International Symposium on Electrical Apparatus & Technologies. 2020. https://doi.org/10.1109/SIELA49118.2020.9167108.
46. Kuchinskii G.S. Partial discharges in high-voltage structures. Leningrad: Energy. Leningrad. Energiya; 1979, 224 p. (In Russ.).
47. Ovsyannikov A.G., Maryushko E.A. Development of recommendations for rapid diagnosis of partial discharges in gas insulated switchgear. In: Elektroenergetika glazami molodezhi: trudy VI Mezhdunarodnoj nauchno-tekhnicheskoj konferencii = Electrical engineering through the eyes of youth: proceedings of the 6th International scientific and technical conference. 9–13 November 2015, Ivanovo. Ivanovo; 2015, vol. 1, р. 536-539. (In Russ.).
48. Gusenkov A.V., Lebedev V.D., Litvinov S.N., Slovesny S.A., Yablokov A.A. Experimental determination of partial discharges in a model of a digital instrument transformer by differential method. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2019;2:32-42. (In Russ.).
49. Bartnikas R. Partial discharges. Their mechanism, detection and measurement. IEEE Transactions on Dielectrics and Electrical Insulation. 2002;9(5):763-808. https://doi.org/10.1109/TDEI.2002.1038663.
50. Robalino Vanegas D.M., Mahajan S.M. Effects of thermal accelerated ageing on a medi um voltage oil-immersed current transformer. In: Conference Record of the 2008 IEEE International Symposium on Electrical Insulation. 9–12 June 2008, Vancouver. Vancouver: IEEE; 2008, p. 470-473. https://doi.org/10.1109/ELINSL.2008.4570375.
51. Gupta B.K., Densley J., Narang A. Diagnostic practices used for instrument transformers. In: Conference Record of the 2008 IEEE International Symposium on Electrical Insulation. 9–12 June 2008, Vancouver. Vancouver: IEEE; 2008, p. 239-242. https://doi.org/10.1109/ELINSL.2008.4570319.
52. Ruijin Liao, Chao Tang, Lijun Yang, Huanchao Chen. Thermal aging studies on cellulose insulation paper of power transformer using AFM. In: IEEE 8th International Conference on Properties & applications of Dielectric Materials. 26–30 June 2006, Bali. Bali: IEEE; 2006, p. 722–725. https://doi.org/10.1109/ICPADM.2006.284279.
53. Eltyshev D.K., Horoshev N.I. Diagnostics of the power oil-filled transformer equipment of thermal power plants. Teploenergetika. 2016;8:32-40. (In Russ.).
54. Korenciak D., Sebok M., Gutten M. Thermal measurement and its application for diagnostics of distribu-tion oil transformers. Izvestiya vysshih uchebnyh zavedenij i energeticheskih objedinennij SNG. Energetika = Energetika. Proceedings of CIS higher education institutions and power engineering associations. (In Russ.). https://doi.org/10.21122/10297448-2019-62-6-583-594.
55. Dan-yi Chi, Fucun Huang, Dong-peng Sui, Li-na Geng, Dan Zhao. The analysis of overheat failure for 220 kV voltage transformer with live detection. The Journal of Engineering. 2019;2019(16):2058-2059. https://doi.org/https://doi.org/10.1049/joe.2018.8825.
56. Ciric R.M., Milkov M. Application of thermal imaging in assessment of equipment in power plants. Monitoring Expertise and Safety Engineering. 2014;4(2):1-9.
57. Litvinov S., Lebedev V., Smirnov N., Tyutikov V., Shuvalov S. Thermal and aerodynamic tests of a digital combined current and voltage transformer. In: 22nd International Conference on Innovative Manufacturing Engineering and Energy – IManE&E: MATEC Web Conference. 2018;178. https://doi.org/10.1051/matecconf/201817809006.
58. Litvinov S., Lebedev V., Smirnov N., Tyutikov V., Makhsumov I. Physical simulation of heat exchange between 6(10) kV voltage instrument transformer and its environment with natural convection and insolation. In: Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment: MATEC Web Conference. Tomsk. 2018;194. https://doi.org/10.1051/matecconf/201819401035.
59. Kuzhekov S.L., Degtyarev A.A. On the recovery of the primary current periodic component of the current transformer in the transient mode. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika. 2011;3:29-31. (In Russ.).
60. Sivkov A.S., Shcheglov L.V., Vedernikov G.A., Petrova O.V. Additional parameters of current transformers to ensure reliable operation of the network. Energoekspert. 2018;3:44-47. (In Russ.).
61. Kuzhekov S.L., Degtyarev A.A., Doni N.A., Shurupov A.A., Petrov A.A., Kostarev L.N., et al. Analysis of non-selective actions of busbar differential protection at external single-phase short circuits with saturation of current transformer in a healthy phase. Relejnaya zashchita. 2019;1:28-36. (In Russ.).
62. Vorob'ev V.S. On incorrect operation of relay protection and automation devices in transient modes with saturated current transformers. In: Zasedanie nekommercheskogo partnerstva “Nauchno-tekhnicheskij sovet edinoj energeticheskoj sistemy” = Meeting of the non-profit partnership "Scientific and Technical Council of the Unified Energy System" . 11 September 2015, Moscow. Moscow; 2015, р. 12-43. (In Russ.).
63. Doni N.A. Possibility of non-selective action of high-speed distance protection under external damage with high shortcircuit currents. Relejshchik. 2015;4:30-33. (In Russ.).
64. Rybalkin A.D., Shurupov A.A., Ermolkin I.A. Prediction of the short-circuit current under current transformer magnetic circuit saturation. In: Cifrovaya elektrotekhnika: problemy i dostizheniya: sbornik nauchnyh statej = Digital Electrical Engineering: Problems and Achievements: collected scientific articles. Cheboksary: SRZAU; 2012, iss. I, 120 р. (In Russ.).
65. Odinaev I.N., Murzin P.V., Pazderin A.V., Tashchilin V.A., Shukalo A. Analysis of mathematical methods for decreasing the saturated current transformer error. Elektrotekhnicheskie sistemy i kompleksy. 2020;2:11-18. https://doi.org/10.18503/2311-8318-2020-2(47)-11-18. (In Russ.).
66. Doni N.A., Ivanov I.Yu., Ivanova V.R. Simulation line differential protection operating on the basis of vector values current. Relejnaya zashchita i avtomatizaciya. 2014;1:14-17. (In Russ.).
67. Lyamets Yu.Ya., Romanov Yu.V., Shirokin M.Yu. Fast estimation of the periodic component of the short circuit current. Elektrichestvo. 2012;4:9-13. (In Russ.).
68. Yablokov A.A., Evdakov A.E., Gotovkina E.E. Experimental verification algorithm for monitoring saturation and the residual magnetization of current transformer magnetic core. Sostoyanie i perspektivy razvitiya elektroi teplotekhnologii (Benardosovskie chteniya): materialy Mezhdunarodnoj (HH Vserossijskoj) nauchno-tekhnicheskoj konferencii = State and development prospects of electrical and thermal technology (Benardosovskie readings): materials of the International (20th All-Russian) scientific and technical conference. 29–31 May 2019, Ivanovo. Ivanovo: Ivanovo State Power University named after V.I. Lenin; 2019, р. 307-309. (In Russ.).
69. Lebedev V.D., Evdakov A.E., Litvinov S.N., Gusenkov A.V. Method to determine magnetic circuit saturation of a current transformer. Patent RF, no. 2674580; 2017. (In Russ.).
Review
For citations:
Litvinov S.N., Lebedev V.D., Gusenkov A.V. Analysis of methods for monitoring the technical condition of high-voltage electronic measuring transformers. iPolytech Journal. 2023;27(2):322-338. (In Russ.) https://doi.org/10.21285/1814-3520-2023-2-322-338