Preview

iPolytech Journal

Advanced search

Physicochemical parameters of a hydrochemical technology employing sodium chloride to obtain cryolite used in aluminium production

https://doi.org/10.21285/1814-3520-2022-2-348-356

Abstract

   The paper aims to study the physicochemical parameters of a hydrochemical technology employing hydrofluoric acid and local mineral resources (sodium chloride) to obtain cryolite used in the electrolysis of cryolite-alumina melts. In order to determine the elemental chemical and phase compositions of initial, intermediate, and final products, titration and X-ray diffraction analysis (using an upgraded Dron-2 unit) were employed. The conducted studies indicate that the proposed process of cryolite production from hydrofluoric acid at 28–30 % concentration using aluminium hydroxide and a concentrated sodium chloride solution occurs at 25 °С for 10–15 min. The yield of cryolite reaches 87.6 %, while ~12 % of cryolite remains dissolved in the hydrochloric acid solution. With the temperature rising from 25°С to 95°С, the cryolite yield is shown to decrease from 87.6 % to 69.3 % due to its higher solubility in the formed hydrochloric acid. The cryolite production process was validated via X-ray diffraction analysis. The analysed sample was found to be consistent with the cryolite reference, i. e., indicating an interaction between sodium chloride and fluoroaluminic acid. The conducted studies served as a basis for developing a process flow diagram of hydrochemical cryolite production using hydrofluoric acid, aluminium hydroxide, and sodium chloride. The conducted studies revealed that the technology of cryolite production employing sodium chloride is easy to implement and cost-effective due to the use of local mineral resources and low energy consumption.

About the Authors

Kh. Safiev
Scientific Research Institute of Metallurgy JSC TAlCo; National Academy of Sciences of Tajikistan
Tajikistan

Khaydar Safiev, Dr. Sci. (Chem.), Professor, Academician, Director

734003

17 Kh. Khakimzade St.

Dushanbe



N. A. Naimov
Scientific Research Institute of Metallurgy JSC TAlCo
Tajikistan

Nosir A. Naimov, Cand. Sci. (Eng.), Deputy Director for Research

734003

17 Kh. Khakimzade St.

Dushanbe



J. R. Ruziev
Tajik National University
Tajikistan

Jura R. Ruziev, Dr. Sci. (Eng.), Professor, Professor of the Department

734025

17, Rudaki Ave.

Dushanbe



I. Sh. Akhmadshoev
Scientific Research Institute of Metallurgy JSC TAlCo
Tajikistan

Ibrokhim Sh. Akhmadshoev, Dr. PhD, Acting Head of the Laboratory

Laboratory of Environmental Research and Industrial Waste Recycling

734003

17, Rudaki Ave.

Dushanbe



A. M. Juraqulov
Scientific Research Institute of Metallurgy JSC TAlCo
Tajikistan

A’zamjon M. Juraqulov, Process Engineer

734003

17, Rudaki Ave.

Dushanbe



A. Murodiyon
Scientific Research Institute of Metallurgy JSC TAlCo
Tajikistan

Asror Murodiyon, Dr. Sci. (Eng.), Associate Professor, Scientific Research

734003

17, Rudaki Ave.

Dushanbe



N. V. Nemchinova
Irkutsk National Research Technical University
Russian Federation

Nina V. Nemchinova, Dr. Sci. (Eng.), Professor, Head of the Department

Department of Non-Ferrous Metals Metallurgy

664074

83, Lermontov St.

Irkutsk



References

1. Altenpohl D. G. Aluminum: technology, applications and environment. A Profile of a modern metal aluminum from within. 6th Edition. Tukwila: Wiley-TMS; 1998, 488 p.

2. Grjotheim K., Kvande H. Introduction to aluminium electrolysis. Dusseldorf: Aluminium Verlag; 1993, 260 р.

3. Thonstad J., Fellner P., Haarberg G. M., Hives J., Kvande H., Sterten A. Aluminium electrolysis - fundamentals of hall-heroult process. 3rd edition. Düsseldorf: Aluminium-Verlag; 2001, 372 p.

4. Mincis M. Ya., Polyakov P. V., Sirazutdinov G. A. Electrometallurgy of aluminium. Novosibirsk: Nauka; 2001, 368 р. (In Russ.).

5. Haupin W. E. Electrochemistry of the Hall-Heroult process for aluminum smelting. Journal of Chemical Education. 1983; 60 (4): 279-282. https://doi.org/10.1021/ed060p279.

6. Gunasegaram D. R., Molenaar D. Towards improved energy efficiency in the electrical connections of Hall-Héroult cells through finite element analysis (FEA) modeling. Journal of Cleaner Production. 2015; 93: 174-192. https://doi.org/10.1016/j.jclepro.2015.01.065.

7. Polyakov P. V., Klyuchantsev A. B., Yasinskiy A. S., Popov Y. N. Conception of “Dream Cell” in aluminium electrolysis. In: Williams E. (eds.). Light Metals. Cham: Springer; 2016, р. 283-288. URL: https://link.springer.com/chapter/10.1007/978-3-319-48251-4_47

8. Asadikiya M., Yang Songge, Zhang Yifan, Lemay C., Apelian D., Zhong Yu. A review of the design of high-entropy aluminum alloys: a pathway for novel Al alloys. Journal of Materials Science. 2021; 56: 12093-12110. https://doi.org/10.1007/s10853-021-06042-6.

9. Tyutrin А. А., Nemchinova N. V., Volodkina A. A. Effects of electrolysis parameters on the technical and economic performance indicators of OA-300M baths. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2020; 24 (4): 906-918. (In Russ.). https://doi.org/10.21285/1814-3520-2020-4-906-918.

10. Korenko M., Priščák J., Šimko F. Electrical conductivity of system based on Na3AlF6–SiO2 melt. Chemical Papers. 2013; 67 (10): 1350-1354. https://doi.org/10.2478/s11696-013-0393-x.

11. Khokhlov V. A. On the classification of molten salt electrolytes. Russian Metallurgy (Metally). 2010; 96-104. https://doi.org/10.1134/S0036029510020047.

12. Tarcy G. P., Tørklep K. Current efficiency in prebake and Søderberg cells. In: Bearne G., Dupuis M., Tarcy G. (eds.). Essential Readings in Light Metals: Aluminum Reduction Technology. Vol. 2. Cham: Springer; 2013, p. 211-216. https://doi.org/10.1002/9781118647851.ch30.

13. Khramov A. P., Shurov N. I. Modern views on the composition of anionic oxy-fluoride complexes of aluminium and their rearrangement during the electrolysis of cryolite-alumina melts. Russian Metallurgy (Metally). 2014; 2014: 581-592. https://doi.org/10.1134/S0036029514080059.

14. Kirik S. D., Zaitseva Yu. N., Leshok D. Yu., Samoilo A. S., Dubinin P. S., Yakimov I. S., et al. NaF-KF-AlF<sub>3</sub> system: phase transition in K<sub>2</sub>NaAl<sub>3</sub>F<sub>12</sub> ternary fluoride. Inorganic Chemistry. 2015; 54 (12): 5960-5969. https://doi.org/10.1021/acs.inorgchem.5b00772.

15. Samoilo A. S., Zaitseva Yu. N., Dubinin P. S., Piksina O. E., Ruzhnikov S. G., Yakimov I. S., et al. Structural aspects of the formation of solid solutions in the NaF-KF-AlF<sub>3</sub> system. Journal of Solid State Chemistry. 2017; 252: 1-7. https://doi.org/10.1016/j.jssc.2017.04.037.

16. Padamata S. K., Yasinskiy A. S., Polyakov P. V. Progress of inert anodes in aluminium industry: review. Journal Siberian Federal University. Chemistry. 2018; 11 (1): 18-30. https://doi.org/10.17516/1998-2836-0055.

17. Wang Jun-qing, Li Chang-lin, Chai Deng-peng, Zhou Yun-feng, Fang Bin, Li Qiang. Relationship between aluminium electrolysis current efficiency and operating condition in electrolyte containing high concentration of Li and K. In: Martin O. (eds.). Light metals. Cham: Springer; 2018, р. 621-626. https://doi.org/10.1007/978-3-319-72284-9_80.

18. Korenko M., Vaskova Z., Šimko F., Šimurda M., Ambrova M., Shi Zhong-ning. Electrical conductivity and viscosity of cryolite electrolytes for solar grade silicon (Si-SoG) electrowinning. Transactions Nonferrous Metals Society China. 2014; 24 (12): 3944-3948. https://doi.org/10.1016/S1003-6326(14)63554-8.

19. Vasyunina N. V., Vasyunina I. P., Polyakov P. V., Mihalev Yu. G. Solubility of aluminum in cryolite-alumina electrolytes. Izvestiya Vuzov. Tsvetnaya Metallurgiya = Izvestiya. Non-Ferrous Metallurgy. 2011; 52 (4): 360-363. (In Russ.).

20. Vasyunina N. V., Vasyunina I. P., Mihalev Yu. G., Vinogradov A. M. Alumina solubility and dissolution rate in acidic alumina-cryolite melts. Izvestiya Vuzov. Tsvetnaya Metallurgiya = Izvestiya. Non-Ferrous Metallurgy. 2009; 50 (4): 338-342. (In Russ.).

21. Pozin M. E. Technology of mineral salts (fertilizers, pesticides, industrial salts, oxides and acids): monograph. Part 2; 4th ed., amended. Leningrad: Chemistry; 1974, 768 p. (In Russ.).

22. Guz' S. Yu., Baranovskaya R. G. Production of cryolite, aluminum fluoride and sodium fluoride. Moscow: Metallurgiya; 1964, 238 р. (In Russ.).

23. Wan Bingbing, Li Wenfang, Sun Wanting, Liu Fang-fang, Chen Bin, Xu Shiyao, et al. Synthesis of cryolite (Na<sub>3</sub>AlF<sub>6</sub>) from secondary aluminum dross generated in the aluminum recycling process. Materials. 2020; 13 (17): 3871. https://doi.org/10.3390/ma13173871.

24. Wang Liangshi, Wang Chunmei, Yu Ying, Huang Xiaowei, Long Zhiqi, Hou Yongke, et al. Recovery of fluorine from bastnasite as synthetic cryolite by-product. Journal of Hazardous Materials. 2012; 209-210: 77-83. https://doi.org/10.1016/j.jhazmat.2011.12.069.

25. Chen Jie-Yuan, Lin Chih-Wei, Lin Po-Han, Li Chi-Wang, Liang Yang-Min, Liu Jhy-Chern, et al. Fluoride recovery from spent fluoride etching solution through crystallization of Na<sub>3</sub>AlF<sub>6</sub> (synthetic cryolite). Separation and Purification Technology. 2014; 137: 53-58. https://doi.org/10.1016/j.seppur.2014.09.019.

26. Sattarov I. The national treasure of Tajikistan. To the 45th anniversary of the Tajik aluminum company. 2020. Available from: https://asiaplustj.info/ru/news/tajikistan/society/20200331/natsionalnoe-dostoyanie-tadzhikistana-k-45-letiyu-tadzhikskoi-alyuminievoi-kompanii [Accessed 23th September 2021]. (In Russ.).


Review

For citations:


Safiev Kh., Naimov N.A., Ruziev J.R., Akhmadshoev I.Sh., Juraqulov A.M., Murodiyon A., Nemchinova N.V. Physicochemical parameters of a hydrochemical technology employing sodium chloride to obtain cryolite used in aluminium production. iPolytech Journal. 2022;26(2):348-356. https://doi.org/10.21285/1814-3520-2022-2-348-356

Views: 872


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)