Power control of electric heating elements using thyristor voltage and resistance converters
https://doi.org/10.21285/1814-3520-2022-2-310-319
Abstract
This article investigates the energy efficiency of thyristor converters with an active load. The conversion of electric energy in a “thyristor converter – electric heating element” installation is considered from the standpoint of electromagnetic theory. The energy characteristics of the considered installation was calculated in the MATLAB environment. When thyristor voltage converters are operated under the mode of controlling the power of active load, passive power was found to be generated at the input during the non-conductive state of the converter (thyristor is locked). The use of passive power allows additional thermal energy to be obtained by means of an extensive use of voltage, without increasing the current consumption. An increase in the depth of power control of electric heating elements by thyristor voltage converters leads to a significant increase in passive power. In the active power control range (50–100% of the nominal value), the factor accounting for variations in the total power in the converter due to an incomplete use of the voltage at the input of the considered installation decreases from 1.0 to 0.93. This reduces the power factor of the load converter from 0.97 to 0.925. Despite the high value of the load power factor (in the control interval 0–50% of the rated power value), the factor accounting for variations in the total power was found to be reduced to 0.66. As a result, the power factor of the converter with the load is reduced by ~ 33%. In order to increase the efficiency of converting electrical energy to control the active load power, it is proposed to use thyristor resistance converters that vary the electrical resistance of the load over time. It is shown that unsatisfactory operation of a thyristor voltage converter can be caused by inefficient use of voltage at the input of the “thyristor converter – electric heating element” installation. When using thyristor resistance converters, the current non-sinusoidality factor does not exceed 1.5 % and the voltage non-sinusoidality factor in a 0.38 kV network does not exceed 0.2 %.
About the Authors
A. V. RudykhRussian Federation
Albina V. Rudykh, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department
Department of Electrical Equipment and Physics
664038
Irkutsk region
Irkutsk district
1/1, Molodezny settlement
S. V. Sukyasov
Russian Federation
Sergey V. Sukyasov, and. Sci. (Eng.), Associate Professor, Associate Professor of the Department
Department of Electrical Equipment and Physics
664038
Irkutsk region
Irkutsk district
1/1, Molodezny settlement
References
1. Conrad H., Krampitz R. Elektrotechnik. Berlin: VEB Verlag Technik; 1983, 362 p.
2. Rudykh A. V., Bonnet V. V. Control capability of electric heating by means of resistance converters. Klimat, ekologiya, sel'skoe hozyajstvo Evrazii: trudy VIII Mezhdunarodnoj nauchno-prakticheskoj konferencii = Climate, ecology, agriculture of Eurasia: proceedings of the 8th International scientific and practical conference. 23–24 May 2019, Irkutsk, Irkutsk State Agrarian University named after A. A. Ezhevsky; 2019, р. 51-56. (In Russ.).
3. Klimash V. S., Thu Ye Min. Generalized mathematical description and simulation of grid-tied thyristor converters. International Journal of Energy and Power Engineering. 2017; 11 (11): 1135-1142. https://doi.org/10.5281/zenodo.1132767.
4. Bakas P., Okazaki Yuhei, Shukla A., Patro S. K., Ilves K., Dijkhuizen F., et al. Review of hybrid multilevel converter topologies utilizing thyristors for HVDC applications. IEEE Transactions on Power Electronics. 2021; 36 (1): 174-190. https://doi.org/10.1109/TPEL.2020.2997961.
5. Huang W. A new control for multi-phase buck converter with fast transient response. In: Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition. 2001. https://doi.org/10.1109/APEC.2001.911660.
6. Jalili K., Weitendorf N., Bernet S. Behavior of PWM active front ends in the presence of parallel thyristor converters. IEEE Transactions on Industrial Electronics. 2008; 55 (3): 1035-1046. https://doi.org/10.1109/TIE.2008.917079.
7. Alekseeva T. L., Ryabchenok N. L., Astrakhantsev L. A., Tikhomirov V. A., Alekseev M. M. Increase of efficiency of electric energy recovery into acelectrical net-works. Sovremennye tehnologii. Sistemnyj analiz. Modelirovanie = Modern technologies. System analysis. Modeling. 2019; 2 (62): 86-97. https://cyberleninka.ru/article/n/povyshenie-effektivnosti-rekuperatsii-elektricheskoy-energii-v-elektricheskie-seti-peremennogo-toka?ysclid=l59b02epkm761788785.
8. Patro S. K., Shukla A. Highly efficient fault-tolerant modular embedded thyristor directed converter for HVDC applications. IEEE Transactions on Power Delivery. 2020; 35 (1): 349-363. https://doi.org/10.1109/TPWRD.2019.2951535.
9. Judge P. D., Merlin M. M. C., Green T. C., Trainer D. R. Thyristor/diode-bypassed sub-module power groups for improved efficiency in modular multilevel converters. IEEE Transactions on Power Delivery. 2018; 34 (1): 84-94. https://doi.org/10.1109/TPWRD.2018.2843390.
10. Alekseyeva T. L., Ryabchenok N. L., Astrakhantsev L. A., Tikhomirov V. A. Energy efficiency of electrical circuits carrying semiconductor devices. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika = Bulletin of South Ural State University. Series: Power Engineering. 2020; 20 (2): 89-98. (In Russ.). https://doi.org/10.14529/power200208.
11. Vobecky J. The bidirectional phase control thyristor. IEEE Transactions on Electron Devices. 2020; 67 (7): 2844-2849. https://doi.org/10.1109/TED.2020.2991690.
12. Golodnyi I., Sinyavsky A., Sanchenko A. Investigation of three-phase asynchronous electric drive with phase-pulse control thyristor voltage regulator. Vestnik Vserossijskogo nauchno-issledovatel'skogo instituta elektrifikacii sel'skogo hozyajstva. 2017;4:139-143. (In Russ.).
13. Wang Shuren, Massoud A. M., Williams B. W. A t-type modular multilevel converter. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2021; 9 (1): 843-857. https://doi.org/10.1109/JESTPE.2019.2953007.
14. Kadomskij D. E. Active and reactive power as characteristics of average values of periodic electromagnetic field efficiency and energy in nonlinear circuit elements. Elektrichestvo. 1987; 7: 39-43. (In Russ.).
15. Pyastolov A. A., Astrahancev L. A. Efficiency of resistance active power control methods. Tekhnika v sel'skom hozyajstve. 1990;6:35-37. (In Russ.).
16. Rudykh A. V., Alekseeva T. L., Ryabchenok N. L., Astrahanceva N. M., Orlenko A. I., Ryabchenok K. P., et al. Voltage control method and a three-phase rectifier. Patent RF, no. 2367082; 2009. (In Russ.).
17. Heumann K. Grundlagen der Leistungselektronik. Stuttgart: Teubner; 1989, 407 р.
18. Shustov M. A. Fundamentals of power electronics. Moscow: Nauka i tekhnika; 2017, 336 р. (In Russ.).
19. Tian Shuilin, Lee Fred C., Li Qiang, Yan Yingyi. Unified equivalent circuit model and optimal design of V2 controlled buck converters. IEEE Transactions on Power Electronics. 2015; 31 (2): 1734-1744. https://doi.org/10.1109/TPEL.2015.2424913.
20. Redl R., Sun Jian. Ripple-based control of switching regulators – an overview. IEEE Transactions on Power Electronics. 2009; 24 (12): 2669-2680. https://doi.org/10.1109/TPEL.2009.2032657.
Review
For citations:
Rudykh A.V., Sukyasov S.V. Power control of electric heating elements using thyristor voltage and resistance converters. iPolytech Journal. 2022;26(2):310-319. (In Russ.) https://doi.org/10.21285/1814-3520-2022-2-310-319