Influence of the main parameters of a dual-mass oscillation system on its dynamic characteristics
https://doi.org/10.21285/1814-3520-2022-2-164-172
Abstract
The influence of the main parameters of a dual-mass oscillation system on its dynamic characteristics is examined.
The object of the study comprises the oscillation system of a vibration machine, containing two masses, connected by elastic and dissipative elements. A reduction in the instability of the operating mode when changing the load or frequency of the driving force can be achieved by expanding the resonance zone. Mathematical modelling and simulation experiment approaches were used for the research. Based on the results obtained using the mathematical model for dual-mass oscillation system by Matlab-Simulink, an algorithm is proposed that includes a procedure for forming an amplitude-frequency response with an extended resonance zone and describing the influence of the main parameters of the oscillation system on the location and width of the specified resonance zone. It is shown that with an increase in the second mass of the oscillation system, the horizontal section of the amplitude-frequency response declines and shifts to the region of lower frequencies. This is explained by the increasing inertness of the system to the driving force. With a larger initial mass, the gain of amplitude-frequency response was shown to increase, while the width of the horizontal section decreases. Further, with increased stiffness of the first elastic element, the resonance section descends even lower and shifts towards higher frequency values of the driving force; however, the width of the section increases. Therefore, the method of correcting the amplitude-frequency response by introducing additional mass into the structure of an oscillation machine in order to expand its resonance zone with no additional automated devices seems promising. The obtained results may form the basis for a calculation method for energy-efficient resonance oscillation machines.
About the Authors
V. G. ZedgenizovRussian Federation
Viktor G. Zedgenizov, Dr. Sci. (Eng.), Professor, Professor of the Department
Department of Road Construction Machines and Hydraulic Systems
664074
83 Lermontov St.
Irkutsk
S. H. Fayzov
Russian Federation
Sorbon H. Fayzov, Postgraduate Student
664074
83 Lermontov St.
Irkutsk
References
1. Fedorenko I. Ya., Gnezdilov A. A. The dynamic properties of a two-mass vibration technological machine. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2016; 3: 179-183. (In Russ.).
2. Byhovskij I. I., Popov S. I. Automation of resonant vibration machines. Moscow: CNIITEstrojmash; 1972, 162 р. (In Russ.).
3. Dmitriev V. N., Gorbunov A. A. Resonant vibration electric drive of machines and plants with automatic control. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2009; 11 (3): 310-314. (In Russ.).
4. Lyan I. P., Panovko G. Ya., Shohin A. E. On the issue of energy consumption of vibration technological machines. In: XXXI Mezhdunarodnaya innovacionnaya konferenciya molodyh uchenyh i studentov po problemam mashinovedeniya: sbornik trudov konferencii = Interna-tional Conference of Young Scientists and Students “Topical Problems of Mechanical Engineering”. 4–6 December 2019, Moscow. Moscow: Mechanical Engineering Research Institute of the Russian Academy of Sciences; 2020, рp. 334-337. (In Russ.).
5. Yatsun V., Filimonikhin G., Dumenko K., Nevdakha A. Equations of motion of vibration machines with a translational motion of platforms and a vibration exciter in the form of a passive auto-balancer. Eastern-European Journal of Enterprise Technologies. 2017; 5 (1): 19-25. https://doi.org/10.15587/1729-4061.2017.111216.
6. Yatsun V., Filimonikhin G., Dumenko K., Nevdakha A. Experimental research of rectilinear translational vibrations of a screen box excited by a ball balancer. Eastern-European Journal of Enterprise Technologies. 2017; 3 (1): 23-29. https://doi.org/10.15587/1729-4061.2017.101798.
7. Zhakash A., Talasbaev A. А., Raymova A. Self-synchronization of two one-massin resonant vibrators. Theoretical & Applied Science. 2015; 26 (6): 48-51. http://dx.doi.org/10.15863/TAS.2015.06.26.11.
8. Astashev V. K. On new application trends of the resonance phenomenon in machines. Vestnik nauchno-tekhnicheskogo razvitiya. 2011; 8. Available from: http://www.vntr.ru/nomera/2011-848/ [Accessed 14th December 2021]. (In Russ.).
9. Panovko G. Ya., Shohin A. E. To resonant tuning of transport-technological vibration machines. In: Dinamika vibroudarnyh (sil'no nelinejnyh) sistem: sbornik trudov XVIII Mezhdunarodnogo simpoziuma, posvyashchennogo 100-letiyu so dnya rozhdeniya doktora tekhnicheskih nauk, professora A. E. Kobrinskogo = Dynamics of vibro-impact (strongly nonlinear) systems: Collected works of 18 th International Symposium dedicated to the 100 th birth anniversary of Doctor of technical sciences, Professor A. E. Kobrinsky. 17–23 May 2015, Moscow – Bekasovo. M.: Mechanical Engineering Research Institute of the Russian Academy of Sciences; 2015, рp. 213-217. (In Russ.).
10. Chernous'ko F. L., Akulenko L. D., Sokolov B. N. Oscillation Control. Moscow: Nauka; 1980, 383 р. (In Russ.).
11. Krivtsov S. N. Substantiation of the need to improve the technical service strategy for the vehicle with diesel engine equipped with common rail fuel injection system. Avtotransportnoe predpriyatie. 2016;10:24-27. (In Russ.).
12. Chernykh I.V. Modeling of electrical devices in Matlab, SimPowerSystems and Simulink.Moscow: DMK Press, 2008. 290 p.
13. Krivtsov S. N., Zedgenizov V. G. Methodological bases for rational use of diagnostic methods of diesel vehicles equipped with common rail fuel injection systems in technological processes of maintenance and repair. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2017; 21 (4): 176-187. (In Russ.). URL: https://cyberleninka.ru/article/n/metodologicheskie-osnovy-ratsionalnogo-primeneniya-metodov-diagnostiki-avtomobiley-s-dizelnym-dvigatelem-i-akkumulyatornoy?ysclid=l56et1fdzc74336884.
14. Yaroshevich N. P., Zabrodets I. P., Yaroshevich T. S. Dynamics of starting of vibrating machines with unbal-anced vibroexciters on solid body with flat vibrations. Applied Mechanics and Materials. 2016; 849: 36-45. https://doi.org/10.4028/www.scientific.net/AMM.849.36.
15. Krivtsov S. N. Dynamical method for diagnosing of automobile diesel engines equipped with common rail fuel injection system. Avtomobil'naya promyshlennost'. 2015; 9: 26-29. (In Russ.).
16. Biderman V. L. Theory of mechanical oscillations. Moscow: Vysshaya shkola; 1980, 408 р. (In Russ.).
17. Shrejner R. T. Mathematical modeling of AC electric drives with semiconductor frequency converters. Ekaterinburg: Ural Branch of the Russian Academy of Sciences; 2000, 654 р. (In Russ.).
18. Skubov D. Yu., Hodzhaev K. Sh. Nonlinear electromechanics. Moscow: Fizmatlit; 2003, 360 р. (In Russ.).
19. Garanin A. Yu., Silaeva E. V., Shlegel' O. A., Popenko V. N. DC electromagnet traction force calculation. Elektrotekhnika. 2003; 2: 55-58.
20. Yatsun V. V., Filimonikhin G. B., Dumenko K., Nevdakha A. Y. Experimental research of rectilinear translational vibrations of a screen box excited by a ball balancer. Eastern-European Journal of Enterprise Technologies. 2017; 3(1): 23-29. https://doi.org/10.15587/1729-4061.2017.101798.
21. Ryzhik B., Sperling L., Duckstein H. Non-synchronous motions near critical speeds in a single-plane autobalancing device. Technische Mechanik. 2004; 24: 25-36.
22. Lu Chung-Jen, Tien Meng-Hsuan. Pure-rotary periodic motions of a planar two-ball auto-balancer system. Mechanical Systems and Signal Processing. 2012;32:251-268. URL: https://www.researchgate.net/publication/258683325_Pure-rotary_periodic_motions_of_a_planar_two-ball_auto-balancer_system
23. Artyunin A. I., Eliseyev S. V. Effect of “crawling” and peculiarities of motion of a rotor with pendular self-balancers. Applied Mechanics and Materials. 2013; 373-375: 38-42. https://doi.org/10.4028/www.scientific.net/AMM.373-375.38.
Review
For citations:
Zedgenizov V.G., Fayzov S.H. Influence of the main parameters of a dual-mass oscillation system on its dynamic characteristics. iPolytech Journal. 2022;26(2):164-172. (In Russ.) https://doi.org/10.21285/1814-3520-2022-2-164-172