Preview

iPolytech Journal

Advanced search

Automatic tuning of frequency and interchange power controllers in low-power energy systems

https://doi.org/10.21285/1814-3520-2022-1-102-116

Abstract

The present work discusses the development of algorithms for power controller autotuning under normal operation in power units of local energy systems having low synchronous generation, which can operate in stand-alone and parallel mode with the external power grid. The power controller of a power unit is tuned in the course of routine operation following the quality indicators of recorded transients under several load commutations upon a varying amplification factor. The amplification factor for each control channel is optimised by a function that approximates the dependence of the transient characteristics on the value of this factor, including the diversity of processes and mode disturbances during power surge/shedding. The sum of weighted overshoot and process duration values is used as a process quality indicator. Owing to adaptation, the controller automatically tunes itself over time, and the control quality improves. This article presents algorithms for autotuning the power controller when regulating frequency and interchange overcurrent under isolated and parallel operation mode of the MiniGrid, respectively. Unlike frequency controller, when the interchange overcurrent controller is autotuned by transient functions associated with load commutations, the algorithm filters out high-frequency power variations resulting from electromechanical oscillations. The simulation results of autotuning the power controller for an elementary scheme, having one generator, confirm the efficiency of the presented method and algorithms. The proposed method of autotuning frequency and interchange overcurrent controllers appears promising for technological enhancement and use in MiniGrid power control systems.

About the Authors

A. G. Fishov
Novosibirsk State University
Russian Federation

Alexander G. Fishov - Dr. Sci. (Eng.), Professor, Professor of the Department of Automated Electric Power Systems.

  1. K. Marx pr., Novosibirsk 630073


A. A. Osintsev
Novosibirsk State University
Russian Federation

Anatoly A. Osintsev - Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Electric Power Plants.

20, K. Marx pr., Novosibirsk 630073



M. Yu. Frolov
Novosibirsk State University
Russian Federation

Mikhail Yu. Frolov - Cand. Sci. (Eng.),  Associate Professor of the Department of Automated Electric Power Systems.

20, K. Marx pr., Novosibirsk 630073



D. A. Armeev
Novosibirsk State University
Russian Federation

Denis V. Armeev - Cand. Sci. (Eng.),  Associate Professor of the Department of Automated Electric Power Systems.

20, K. Marx pr., Novosibirsk 630073



I. S. Murashkina
Novosibirsk State University
Russian Federation

Inna S. Murashkina - Postgraduate Student.

20, K. Marx pr., Novosibirsk 630073



References

1. Chen Liuyang, Chen Qing, Zhang Zhiming, Xie Ranran. Cable fault characteristics of energy storage in DC microgrids. In: 5th Asia Conference on Power and Electrical Engineering. 2020. https://doi.org/10.1109/ACPEE48638.2020.9136207.

2. Zhou Xuesong, Guo Tie, Ma Youjie. An overview on microgrid technology. In: International Conference on Mechatronics and Automation. 2–5 August 2015, Beijing. Beijing: IEEE; 2015, р. 76-81. https://doi.org/10.1109/ICMA.2015.7237460.

3. Barinov V. A. Development prospects of the electric power industry in Russia for the period up to 2030. Nacional'nyj issledovatel'skij institut mirovoj ekonomiki i mezhdunarodnyh otnoshenij im. E. M. Primakova Rossijskoj akademii nauk = Analysis and Forecasting. IMEMO Journal. 2010;3:13-20. (In Russ.).

4. Kolomishev V. G. Rustamhanova G. I. Modification of the Ziegler-Nichols time method and optimization of PIDregulator parameters by means of Matlab. Fundamentalnie issledovaniya = Fundamental research. 2016;113:526-531. (In Russ.).

5. Fishov A. G., Ivkin E. S., Gilev O. V., Kakosha Yu. V. Modes and automation of minigrid operating as part of the UPS distribution electric networks. Relejnaya zashchita i avtomatizaciya. 2021;3:22-37. (In Russ.).

6. Usik V. A., Terekhov V. F. Device for tuning dieselgenerator speed controller. Patent RF, no 2065067; 1991. (In Russ.). 7. Tararykin S. V., Anisimov A. A., Terekhov A. I., Sokolov K. E. Method of automatic tuning of controller. Patent RF, no 2714567; 2019. (In Russ.).

7. Datta A., Konar S., Singa L. J., Singh K. M., Lalfakzuala A. A study on load frequency control for a hybrid power plant. In: Second International Conference on Electrical, Computer and Communication Technologies. 2017. https://doi.org/10.1109/ICECCT.2017.8117975.

8. Shaker H. K., Zoghby H. E., Bahgat M. E., AbdelGhany A. M. Advanced control techniques for an interconnected multi area power system for load frequency control. In: 21st International Middle East Power Systems Conference. 17–19 December 2019, Cairo. Cairo: IEEE; 2019, р. 710-715. https://doi.org/10.1109/MEPCON47431.2019.9008158.

9. Karimi H., Beheshti M. T. H., Ramezani A. Decentralized voltage and frequency control in an autonomous ac microgrid using gain scheduling tuning approach. In: 24th Iranian Conference on Electrical Engineering. 10–12 May 2016, Shiraz. Shiraz: IEEE; 2016, р. 1597-1602. https://doi.org/10.1109/IranianCEE.2016.7585776.

10. Satapathy P., Debnath M. K., Singh M. B., Mohanty P. K. Design of FPI controller for load frequency control of a nonlinear power system. In: Technologies for Smart-City Energy Security and Power. 2018. https://doi.org/10.1109/ICSESP.2018.8376681.

11. Abubakr H., Mohamed T. H., Hussein M. M., Shabib G. ESO-based self tuning frequency control design for isolated microgrid system. In: 21st International Middle East Power Systems Conference. In: 21st International Middle East Power Systems Conference. 17–19 December 2019, Cairo. Cairo: IEEE; 2019, р. 589-593. https://doi.org/10.1109/MEPCON47431.2019.9008042.

12. Tripathy S., Debnath M. K., Kar S. K. Jaya algorithm tuned FO-PID controller with first order filter for optimum frequency control. In: 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology. 2021. https://doi.org/10.1109/ODICON50556.2021.9428959.

13. Patel N. C., Debnath M. K., Bagarty D. P., Das P. Load frequency control of a non-linear power system with optimal PID controller with derivative filter. In: IEEE International Conference on Power, Control, Signals and Instrumentation Engineering. 21–22 September 2017, Chennai. Chennai: IEEE; 2017, p. 1515-1520. https://doi.org/10.1109/ICPCSI.2017.8391964.

14. Mishra S., Nayak P. C., Prusty U. C., Prusty R. C. Model predictive controller based load frequency control of isolated microgrid system integrated to plugged-in electric vehicle. In: 1st Odisha International

15. Conference on Electrical Power Engineering, Communication and Computing Technology. 2021. https://doi.org/10.1109/ODICON50556.2021.9428956.

16. Zaidi A., Cheng Qi. Online and offline load frequency controller design. In: IEEE Texas Power and Energy Conference. 2017. https://doi.org/10.1109/TPEC.2017.7868283.

17. Mohamed T. H., Hussein M. M. Online gain tuning of conventional load frequency controller for Microgrid power system. In: Twentieth International Middle East Power Systems Conference. 18–20 December 2018, Cairo. Cairo: IEEE; 2018, р. 424-428. https://doi.org/10.1109/MEPCON.2018.8635107.

18. Ali M., Djalal M. R., Fakhrurozi M., Kadaryono, Budiman. Optimal design capacitive energy storage (CES) for load frequency control in micro hydro power plant using flower pollination algorithm. In: Electrical Power, Electronics, Communications, Controls and Informatics Seminar. 9–11 October 2018, Batu. Batu: IEEE; 2018, p. 21-26. https://doi.org/10.1109/EECCIS.2018.8692997.

19. Sedoykin D. N., Yurganov A. A. An adaptive automatic excitation regulator based on fuzzy approximation operating with an under-excited generator. Nauchnotekhnicheskie vedomosti Sankt-Peterburgskogo politekhnicheskogo universiteta. Estestvennye i inzhenernye nauki = St. Petersburg Polytechnic University. Series: Journal of engineering sciences and technology. 2018;24(2):22-29. https://doi.org/10.18721/JEST.240202.

20. Bulatov U. N., Ignatyev I. V., Popik V. A. Technique of sampling optimal settings of power stations generators ARRF systems. Sovremennye tehnologii. Sistemnyj analiz. Modelirovanie = Modern technologies. System analysis. Modeling. 2011;1:192-198. (In Russ.).

21. Bulatov U. N., Krukov A. V., Hyng Chan Zyuj. Intelligent controllers for distributed generation plants. Sovremennye tehnologii. Sistemnyj analiz. Modelirovanie = Modern technologies. System analysis. Modeling. 2015;2:83-95. (In Russ.).


Review

For citations:


Fishov A.G., Osintsev A.A., Frolov M.Yu., Armeev D.A., Murashkina I.S. Automatic tuning of frequency and interchange power controllers in low-power energy systems. iPolytech Journal. 2022;26(1):102-116. (In Russ.) https://doi.org/10.21285/1814-3520-2022-1-102-116

Views: 295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)