Preview

iPolytech Journal

Advanced search

ANALYSIS OF ELECTRIC ENERGY AND HYDROGEN ACCUMULATION EFFICIENCY IN POWER SYSTEMS WITH RENEWABLE ENERGY SOURCES

https://doi.org/10.21285/1814-3520-2018-3-183-193

Abstract

The PURPOSE of the paper is to study the power system which contains wind turbines, photoelectric transducers, an electrolyzer for hydrogen production, fuel cells in order to determine the efficiency of electrical energy and hydrogen accumulation. METHODS. Based on the mathematical modeling an optimal structure of the power system has been selected and the operation modes of energy sources and storage devices have been studied in dynamics. Unlike the approaches known in the literature, the mathematical model used does not require preliminary setting of the operation modes of the system elements or the algorithms for energy switching between energy sources, load and accumulators. This allows us to investigate complex power systems which simultaneously produce and accumulate energy carriers of various types, in our case these are electrical energy and hydrogen. RESULTS AND THEIR DISCUSSION. Climatic and meteorological conditions that approximately correspond to the conditions of the southern part of Primorsky Krai and the middle part of Lake Baikal are chosen as input data. Technical and economic indicators correspond to the domestic and foreign equipment presented in the Russian market. Calculations are carried out both with and without restrictions on the introduction of specific technologies for their effectiveness evaluation. CONCLUSIONS. Mathematical modeling has shown the efficiency of the combined use of wind and solar energy in the areas under consideration as well as simultaneous accumulation of both electric energy and hydrogen. Accumulation of electric energy is most effective during short-term time intervals (output of electric power for several hours). If the duration of continuous no-wind and no-sun conditions increases up to several days the accumulation of hydrogen becomes more economical. The economic effect provided by the accumulation of hydrogen can reach 50% of the total effect under technical and economic indicators of equipment predicted for the next 10-15 years. The obtained results allow to substantiate the choice of equipment for consumer power supply in stand-alone power systems of small capacity.

About the Authors

O. V. Marchenko
Melentiev Energy Systems Institute SB RAS
Russian Federation


S. V. Solomin
Melentiev Energy Systems Institute SB RAS
Russian Federation


References

1. Lombardi P., Sokolnikova T., Suslov K., Voropai N.I., Styczynski Z.A. Isolated power system in Russia: a chance for renewable energies // Renewable Energy. 2016. Vol. 90. Р. 532-541. https://doi.org/10.1016/j.renene.2016.01.016

2. Сокольникова Т.В., Суслов К.В., Ломбарди П. Определение оптимальных параметров накопителя для интеграции возобновляемых источников энергии в изолированных энергосистемах с активными потребителями // Вестник ИрГТУ. 2015. № 10 (105). С. 206-212.

3. Суслов К.В. Развитие систем электроснабжения изолированных территорий России с использованием возобновляемых источников энергии // Вестник ИрГТУ. 2017. Т. 21. № 5. С. 131-142. https://doi.org/10.21285/1814-3520-2017-5-131-142

4. Марченко О.В., Соломин С.В. Системные исследования эффективности возобновляемых источников энергии // Теплоэнергетика. 2010. № 11. C. 12-17.

5. Marchenko O.V., Solomin S.V. Efficiency of small autonomous wind/diesel/hydrogen systems in Russia // International Journal of Renewable Energy Research. 2013. Vol. 3. No. 2. P. 241-245.

6. Marchenko O.V., Solomin S.V. Modeling of hydrogen and electrical storages in wind/PV energy system on the Lake Baikal coast // International Journal of Hydrogen Energy. 2017. Vol. 42. No. 15. P. 9361-9370. https://doi.org/10.1016/j.ijhydene.2017.02.076

7. Dufo-Lopez R. Multi-objective optimization minimizing coat and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage // Applied Energy. 2011. Vol. 88. No.1. P. 4033-4041. https://doi.org/10.1016/j.apenergy.2011.04.019

8. Huang Q. Multi-turbine wind-solar hybrid system // Renewable Energy. 2015. Vol. 76. No. 11. P. 401-407. https://doi.org/10.1016/j.apenergy.2011.04.019

9. Marchenko O.V., Solomin S.V. The future energy: hydrogen versus electricity // International Journal of Hydrogen Energy. 2015. Vol. 40. No. 10. P. 3801-3805. https://doi.org/10.1016/j.ijhydene.2015.01.132

10. Marchenko O.V. Mathematical modeling and economic efficiency assessment of autonomous energy systems with production and storage of secondary energy carriers // International Journal of Low-carbon Technologies. 2010. Vol. 5. No. 4. P. 250-255. https://doi.org/10.1093/ijlct/ctq031

11. Марченко О.В., Соломин С.В. Эффективность совместного использования возобновляемых источников энергии // Вестник ИрГТУ. 2017. Т. 21. № 8. С. 111-121. https://doi.org/10.21285/1814-3520-2017-8-111-121

12. Ngan M.S. Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia // Renewable and Sustainable Energy Reviews. 2012. Vol. 16. No. 1. P. 634-647. https://doi.org/10.1016/j.rser.2011.08.028

13. Sigarchian S.G., Malmquist A., Fransson T. Modeling and control strategy of a hybrid PV/Wind/Engine/Battery system to provide electricity and drinkable water for remote applications // Energy Procedia. 2014. Vol. 57. P. 1401-1410. https://doi.org/10.1016/j.egypro.2014.10.087

14. Carapelucci R., Giordano L. Modeling and optimization of an energy generation island based on renewable technologies and hydrogen storage systems // International Journal of Hydrogen Energy. 2012. Vol. 37. No. 3. P. 2081-2093. https://doi.org/10.1016/j.ijhydene.2011.10.073

15. Akyuz E., Oktay Z., Dincer I. Performance investigation of hydrogen production from a hybrid wind-PV system // International Journal of Hydrogen Energy. 2012. Vol. 37. No. 21. P. 16623-16630. https://doi.org/10.1016/j.ijhydene.2012.02.149

16. Marchenko O.V. Mathematical modelling of electricity market with renewable energy sources // Renewable Energy. 2007. Vol. 32. No. 6. P. 976-990. https://doi.org/10.1016/j.renene.2006.04.004

17. Марченко О.В., Соломин С.В. Вероятностный анализ эффективности ветроэнергетических установок // Известия РАН. Энергетика. 1997. № 3. C. 52-60.

18. Marchenko O.V., Solomin S.V. Efficiency of wind energy utilization for electricity and heat supply in northern regions of Russia // Renewable Energy. 2004. Vol. 29. No. 11. P. 1793-1809. https://doi.org/ 10.1016/j.renene.2004.02.006

19. Marchenko O.V., Solomin S.V. Economic efficiency of renewable energy sources in Russia // International Journal of Renewable Energy Research. 2014. Vol. 4. No. 3. P. 548-554.

20. Projected costs of generating electricity. 2015 edition. Paris: International Energy Agency/Nuclear Energy Agency, 2015. 215 p.


Review

For citations:


Marchenko O.V., Solomin S.V. ANALYSIS OF ELECTRIC ENERGY AND HYDROGEN ACCUMULATION EFFICIENCY IN POWER SYSTEMS WITH RENEWABLE ENERGY SOURCES. Proceedings of Irkutsk State Technical University. 2018;22(3):183-193. (In Russ.) https://doi.org/10.21285/1814-3520-2018-3-183-193

Views: 271


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)