Operation of a photovoltaic installation in the North under various cloudiness conditions
https://doi.org/10.21285/1814-3520-2022-1-81-91
Abstract
This study investigates the effect produced by various types of cloudiness on the functioning of a photovoltaic system in the central part of the Republic of Sakha (Yakutia). The electric power efficiency of the photovoltaic system under various cloudiness conditions was assessed using graphical interpretations, measuring and recording devices, as well as a description of the procedure for conducting experimental work. The average indicators of a decrease in the electric power efficiency of the photovoltaic system were determined using patterns for a certain type of cloudiness. A specific cloudiness type was identified by performing measurements and calculating illumination ranges, taking boundary conditions into account. These studies were carried out during the summer period of 2021 using the facilities of the mobile test site of the V.P. Larionov Institute of the Physical-Technical Problems of the North of Siberian Branch of the Russian Academy of Sciences located in the central part of the Republic of Sakha (Yakutia). Control parameters of alterations in the generating capacity of the photovoltaic system were obtained for 10 types of cloudiness. The obtained parameters can be used when modeling operational processes and performing engineering calculations of the operating modes for solar power plants. According to the results, during the operation of photovoltaic systems under various types of cloudiness, the decrease in the generating capacity of the installation can vary within 8–95% relative to the generating capacity indicator under clear weather. The obtained indicators of alterations in the generating capacity of a photovoltaic system under various cloudiness conditions can be applied for developing a methodology for assessing the effect of cloudiness and its types on the carrying capacity of solar beams falling on the photovoltaic panel surface, as well as to more accurately determine the energy potential of solar generation in a certain area.
Keywords
About the Authors
N. P. MestnikovRussian Federation
Nikolay P. Mestnikov - Postgraduate student, Assistant Professor of the Department of Power Supply, M.K. Ammosov North-Eastern FU, s of the North of the Siberian Branch RAS.
58 Belinsky St., Yakutsk 677000, Republic of Sakha (Yakutia); 42 Kulakovsky St., Yakutsk 677007, Republic of Sakha (Yakutia)
P. F. Vasilyev
Russian Federation
Pavel F. Vasilyev - Cand. Sci. (Eng.), Head of the Department of Power Supply, M.K. Ammosov North-Eastern FU; Head of the Electric Power Engineering Department, Institute of Physical-Technical Problems of the North of the Siberian Branch RAS.
58 Belinsky St., Yakutsk 677000, Republic of Sakha (Yakutia); 42 Kulakovsky St., Yakutsk 677007, Republic of Sakha (Yakutia)
G. I. Davydov
Russian Federation
Gennadiy I. Davydov - Researcher of the Department of Electric Power Engineering.
1 Oktyabrskaya St., Yakutsk 677027, Republic of Sakha (Yakutia)
A. M. Khoyutanov
Russian Federation
Aleksandr M. Khoyutanov - Researcher of the Department of Electric Power Engineering.
1 Oktyabrskaya St., Yakutsk 677027, Republic of Sakha (Yakutia)
A. M.-N. Alzakkar
Russian Federation
Ahmad M.-N. Alzakkar - Postgraduate student.
6 Yarullin St., Kazan 420066
References
1. Dmitrienko V. N., Lukutin B. V. Method for estimating solar radiation energy for photovoltaic plants. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. 2017;328(5):49-55. (In Russ.). http://izvestiya. tpu.ru/archive/article/view/1881.
2. Tulegenova A. A. Energy supply potential of the Kazakhstan regions with the use of renewable energy sources. Alʹternativnaya energetika i ekologiya = Alternative Energy and Ecology. 2020;31-33:72-80. (In Russ.). https://doi.org/10.15518/isjaee.2020.11.008.
3. Debrin A. S., Semenov A. F., Bastron A. V., Kuz'min P. N. The design of energy efficient FSES for autonomous power supply systems to agricultural consumers of Krasnoyarsk Krai by using the grapho-semantic database of solar radiation energy. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2020;3:216-221. (In Russ.).
4. Mestnikov N. P., Vasilyev P. F., Davydov G. I., Khoyutanov A. M., Alzakkar A. M. Applicability of photoelectrical solar units inside domical structures in northern conditions. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2021;25(4):435-449. (In Russ.). https://doi.org/10.21285/1814-3520-2021-4-435-449.
5. Shakirov V. A., Yakovkina T. N., Kurbatsky V. G. Methodology for assessing electricity generation by solar power plants using data from long-term observations of meteorological stations. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2020;24(4):858-875. (In Russ.). https://doi.org/10.21285/1814-3520-2020-4-858-875.
6. Babaev B. D. Calculation of electricity generation by a local solar power plant with optimal parameters. Vestnik Dagestanskogo gosudarstvennogo universiteta. Seriya 1: Estestvennye nauki = Herald of Dagestan State University. 2021;36(3):21-28. (In Russ.). https://doi.org/10.21779/2542-0321-2021-36-3-21-28.
7. Babaev B. D. Program for calculating the influx of renewable energy resources and optimizing the operation modes of power complexes according to consumer load dynmics. In: Problemy sovershenstvovaniya toplivnoenergeticheskogo kompleksa: materialy XIV Mezhdunarodnoj nauchno-tekhnicheskoj konferencii = Problems of fuel and energy complex improvement: proceedings of the 14th International Scientific and Technical Conference. 30 October – 1 November 2018, Saratov. Saratov: Yuri Gagarin State Technical University of Saratov; 2018, р. 55-60. (In Russ.).
8. Torgovkin N. V., Makarov V. N. Climate change influence on geochemical features of cryosoles in Yakutsk. In: Ustojchivost' prirodnyh I tekhnicheskih sistem v kriolitozone: materialy Vserossijskoj konferencii s mezhdunarodnym uchastiem, posvyashchennoj 60-letiyu obrazovaniya Instituta merzlotovedeniya im. P. I. Mel'nikova Sibirskogo otdeleniya Rossijskoj akademii nauk = Stability of natural and engineering systems in the cryolithozone: materials of All-Russian conference with international participation dedicated to the 60th anniversary of the formation of the P. I. Melnikov Permafrost Institute of the Siberian Branch of the Russian Academy of Sciences. 28–30 September 2020, Yakutsk. Yakutsk: P. I. Melnikov Permafrost Institute of the Siberian Branch of the Russian Academy of Sciences; 2020, р. 182-184. (In Russ.).
9. Perez R., Cebecauer T., Šúri M. Semi-empirical satellite models. Chapter 2. In: Solar Energy Forecasting and Resource Assessment. Academic press; 2013, р. 2148. https://doi.org/10.1016/B978-0-12-397177-7.00002-4.
10. Šúri M., Cebecauer T., Skoczek A. Solargis: solar data and online applications for pv planning and performance assessment. In: 26th European Photovoltaics Solar Energy Conference. Hamburg; 2011. https://solargis2-webassets.s3.eu-west-1.amazonaws.com/public/publication/2011/5514f381d4/Suri-Cebecauer-Skoczek EUPVSEC2011-Solargis-solar-data-and-onlineapplications-for-PV-planning-and-performanceassessment.pdf
11. Suri M., Cebecauer T., Skoczek A., Marais R., Mushwana C., Reinecke J., et al. Cloud cover impact on photovoltaic power production in South Africa. In: South African Solar Energy Conference: Proceedings of the 2nd. Port Elizabeth; 2014. https://solargis2-web-assets.s3.euwest-1.amazonaws.com/public/publication/2014/7e83f59297/Suri-et-al-SASEC2014-Cloud-cover-impacton-PV-power-production-in-South-Africa.pdf
12. Bonkaney A., Madougou S., Adamou R. Impacts of cloud cover and dust on the performance of photovoltaic module in Niamey. Journal of Renewable Energy. 2017;2017. https://doi.org/10.1155/2017/9107502.
13. Kern E. C., Gulachenski E. M., Kern G. A. Cloud effects on distributed photovoltaic generation: slow transients at the Gardner, Massachusetts photovoltaic experiment. In: IEEE Transactions on Energy Conversion. 1989;4(2):184-190. https://doi.org/10.1109/60.17910.
14. Mestnikov N., Vasiliev P., Alzakkar A. Development of method of protection of solar panels against dust pollution in the Northern part of the Russian Far East. In: International Ural Conference on Electrical Power Engineering (UralCon). 2021. https://doi.org/10.1109/UralCon52005.2021.9559596.
15. Mahalakshmi R., Aswin Kumar A., Kumar A. Design of fuzzy logic based maximum power point tracking controller for solar array for cloudy weather conditions. In: Power and energy systems: towards sustainable energy. 2014. https://doi.org/10.1109/PESTSE.2014.6805308.
16. Detyniecki M., Marsala C., Krishnan A., Siegel M. Weather-based solar energy prediction. In: IEEE International Conference on Fuzzy Systems. 2012. https://doi.org/10.1109/FUZZ-IEEE.2012.6251145.
17. Lofthouse J., Simmons R. T., Yonk R. M. Reliability of renewable energy: solar. Available from: https://www.usu.edu/ipe/wpcontent/uploads/2015/11/Reliability-Solar-Full-Report.pdf [Accessed 12th June 2021].
18. Sowa S. Improving the energy efficiency of lighting systems by the use of solar radiation. In: 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018): E3S Web Conference. 2018;70:01013. https://doi.org/10.1051/e3sconf/20187001013.
19. Shilovtseva O. A. Light resources of Moscow. Alʹternativnaya energetika i ekologiya = Alternative Energy and Ecology. 2013;6-2:88-96. (In Russ.).
20. Mestnikov N. P., Al'zakkar A. M.-N. Studying the influence of cold climate of Yakutia on operation of a monocrystalline solar power generation system. Tinchurinskie chteniya – 2021 «Energetika i cifrovaya transformaciya»: materialy Mezhdunarodnoj molodezhnoj nauchnoj konferencii = Tinchurinskie readings - 2021 "Energy and digital transformation": materials of the International youth scientific conference. 28–30 April 2021, Kazan'. Kazan': Astor i Ya; 2021, р. 256-260. (In Russ.).
21. Vasilyev P. F., Mestnikov N. P. Research of the effect of the sharply continental climate of Yakutia on the functioning of solar panels. Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2021;1:57-64. https://doi.org/10.34286/1995-4646-2021-76-1-57-64.
22. Nurullin E. G., Zajnutdinova E. E., Salahutdinov I. A. Methodological basis for the development of a combined power supply system for an agricultural enterprise using unconventional energy sources. In: Sel'skoe hozyajstvo i prodovol'stvennaya bezopasnost': tekhnologii, innovacii, rynki, kadry: nauchnye trudy II Mezhdunarodnoj nauchnoprakticheskoj konferencii, posvyashchennoj 70-letiyu Instituta mekhanizacii i tekhnicheskogo servisa i 90-letiyu Kazanskoj zootekhnicheskoj shkoly = Agriculture and food security: technologies, innovations, markets, personnel: scientific works of the 2nd International scientific and practical conference dedicated to the 70th anniversary of the Institute of Mechanization and Technical Service and the 90th anniversary of the Kazan Zootechnical School. 28–30 May 2020, Kazan'. Kazan': Kazanskiy gosudarstvennyj agrarnyj universitet; 2020, р. 26-32. (In Russ.).
Review
For citations:
Mestnikov N.P., Vasilyev P.F., Davydov G.I., Khoyutanov A.M., Alzakkar A.M. Operation of a photovoltaic installation in the North under various cloudiness conditions. iPolytech Journal. 2022;26(1):81-91. (In Russ.) https://doi.org/10.21285/1814-3520-2022-1-81-91