Preview

iPolytech Journal

Advanced search

Dynamical control on the Adomian decomposition method for solving shallow water wave equation

https://doi.org/10.21285/1814-3520-2021-5-623-632

Abstract

The aim of this study is to apply a novel technique to control the accuracy and error of the Adomian decomposition method (ADM) for solving nonlinear shallow water wave equation. The ADM is among semi-analytical and powerful methods for solving many mathematical and engineering problems. We apply the Controle et Estimation Stochastique des Arrondis de Calculs (CESTAC) method which is based on stochastic arithmetic (SA). Also instead of applying mathematical packages we use the Control of Accuracy and Debugging for Numerical Applications (CADNA) library. In this library we will write all codes using C++ programming codes. Applying the method we can find the optimal numerical results, error and step of the ADM and they are the main novelties of this research. The numerical results show the accuracy and efficiency of the novel scheme.

About the Authors

L. Noeiaghdam
Amirkabir University of Technology
Islamic Republic of Iran

Laleh Noeiaghdam, Postgraduate Student, Department of Civil and Environmental Engineering

350, Hafez Ave, Valiasr Square, Tehran, 1591634311



S. Noeiaghdam
Irkutsk National Research Technical University; South Ural State University
Russian Federation

Samad Noeiaghdam, Senior Lecturer, Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University; Senior Researcher of the Department of Applied Mathematics and Programming, South Ural State University

83 Lermontov St., Irkutsk 664074
76, Lenin pr., Chelyabinsk 454080



D. N. Sidorov
Irkutsk National Research Technical University; L. A. Melentiev Institute of Energy Systems of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Denis N. Sidorov, Dr. Sci. (Physics & Mathematics), Professor of RAS, Head of the Laboratory of Industrial Mathematics, Baikal School of BRICS, Irkutsk National Research Technical University; Chief Researcher of the Department of Applied Mathematics, L. A. Melentiev Institute of Energy Systems of Siberian Branch of the Russian Academy of Sciences,

83 Lermontov St., Irkutsk 664074
130, Lermontov St., Irkutsk 664033



References

1. Abdelsalam U. M. Traveling wave solutions for shallow water equations. Journal of Ocean Engineering and Science. 2017;2(1):28-33. https://doi.org/10.1016/j.joes.2017.02.002.

2. Adeyemo O. D., Khalique C. M. Stability analysis, symmetry solutions and conserved currents of a two-dimensional extended shallow water wave equation of fluid mechanics. Partial Differential Equations in Applied Mathematics. 2021;4:100134. https://doi.org/10.1016/j.padiff.2021.100134.

3. Aydin B., Kânoğlu U. New analytical solution for nonlinear shallow water-wave equations. Pure and Applied Geophysics . 2017;174:3209-3218. https://doi.org/10.1007/s00024-017-1508-z.

4. Boháček J., Kharicha A., Ludwig A., Wu Menghuai. Shallow water model for horizontal centrifugal casting. In: Materials Science and Engineering: IOP Conference S eries. 2012;33. https://doi.org/10.1088/1757-899X/33/1/012032.

5. Bresch D., Desjardins B., Lin Chi-Kun. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Communications in Partial Differential Equations . 2003:28(3-4):843-868. https://doi.org/10.1081/PDE-120020499.

6. Scott N. S., Jézéquel F., Denis C., Chesneaux J. M. Numerical ‘health check’for scientific codes: the CADNA approach. Computer Physics Communications. 2007;176(8):507-521. https://doi.org/10.1016/j.cpc.2007.01.005.

7. Jézéquel F., Chesneaux J. M. CADNA: a library for estimating round-off error propagation. Computer Physics Communications. 2008;178(12):933-955. https://doi.org/10.1016/j.cpc.2008.02.003.

8. Chesneaux J.-M. The equality relations in scientific computing. Numerical Algorithms. 1994;7:129-143. https://doi.org/10.1007/BF02140678.

9. Chesneaux J.-M., Jézéquel F. Dynamical control of computations using the Trapezoidal and Simpson's rules. Journal of Universal Computer Scienc е. 1998;4(1):2-10. https://doi.org/10.3217/jucs-004-01-0002.

10. Fariborzi Araghi M. A., Fallahzadeh A. Dynamical Control of accuracy using the stochastic arithmetic to estimate the solution of the ordinary differential equations via Adomian decomposition method. Asian Journal of Mathematics and Computer Research. 2016;8(2):128-135.

11. Fallahzadeh A., Fariborzi Araghi M. A., Discrete Adomian decomposition method for fuzzy convection-diffusion equation. British Journal of Mathematics & Computer Science. 2015;9(3):279-287. https://doi.org/10.9734/BJMCS/2015/14727.

12. Imani A. A., Ganji D. D., Rokni H. B., Latifizadeh H., Hesameddini E., Hadi Rafiee M. Approximate traveling wave solution for shallow water wave equation. Applied Mathematical Modelling. 2012;36(4):1550-1557. https://doi.org/10.1016/j.apm.2011.09.030.

13. Noble P., Vila J.-P. Thin power-law film flow down an inclined plane: consistent shallow-water models and stability under large-scale perturbations // Journal of Fluid Mechanics. 2013;735:29-60. https://doi.org/10.1017/jfm.2013.454.

14. Noeiaghdam S., Fariborzi Araghi M. A. A novel algorithm to evaluate definite integrals by the Gauss-Legendre integration rule based on the stochastic arithmetic: application in the model of osmosis system // Mathematical Modelling of Engineering Problems. 2020;7(4):577-586. https://doi.org/10.18280/mmep.070410.

15. Noeiaghdam L., Noeiaghdam S., Sidorov D. Dynamical control on the homotopy analysis method for solving nonlinear shallow water wave equation // Journal of Physics: Conference Series. 2021;1847:012010. https://doi.org/10.1088/1742-6596/1847/1/012010.

16. Noeiaghdam S., Micula S., Nieto J. J. A novel technique to control the accuracy of a nonlinear fractional order model of COVID-19: application of the CESTAC method and the CADNA library. Mathematics. 2021;9(12):1321. https://doi.org/10.3390/math9121321.

17. Noeiaghdam S., Sidorov D. Integral equations: theories, approximations, and applications. Symmetry. 2021;13(8):1402. https://doi.org/10.3390/sym13081402.

18. Noeiaghdam S., Sidorov D., Wazwaz A.-M., Sidorov N., Sizikov V. The numerical validation of the Adomian decomposition method for solving Volterra integral equation with discontinuous kernel using the CESTAC method. Mathematics. 2021;9(3):260. https://doi.org/10.3390/math9030260.

19. Noeiaghdam S., Sidorov D., Zamyshlyaeva A., Tynda A., Dreglea A. A valid dynamical control on the reverse osmosis system using the CESTAC method. Mathematics. 2021;9(1). https://dx.doi.org/10.3390/math9010048.

20. Novin R., Fariborzi Araghi M. A., Mahmoudi Ya. A novel fast modification of the Adomian decomposition method to solve integral equations of the first kind with hypersingular kernels. Journal of Computational and Applied Mathematics. 2018;343:619-634. https://doi.org/10.1016/j.cam.2018.04.055.

21. Vignes J., La Porte M. Error analysis in computing. In: Information Processing. Amsterdam; 1974, р. 610-614.

22. Yang Nan, Xu Wenlong, Zhang Kai, Zheng Bailin. Exact solutions to the space-time fractional shallow water wave equation via the complete discrimination system for polynomial method. Results in Physics. 2021;20(002):103728. https://doi.org/10.1016/j.rinp.2020.103728.

23. Zarei E., Noeiaghdam S. Advantages of the discrete stochastic arithmetic to validate the results of the Taylor expansion method to solve the generalized Abel’s integral equation. Symmetry. 2021;13(8):1370. https://doi.org/10.3390/sym13081370.

24. Urata N. Wave mode coupling and instability in the internal wave in aluminum reduction cells. In: Bearne G., Dupuis M., Tarcy G. (eds.). Essential Readings in Light Metals. Cham: Springer; 2016, р. 373–378. https://doi.org/10.1007/978-3-319-48156-2_53.

25. Kadkhodabeigi M., Saboohi Y. A new wave equation for MHD instabilities in aluminum reduction cells. Light Metals. 2007;345-349.

26. Radionov E. Yu., Nemchinova N. V., Tretiakov Ya. A. Magnetohydrodynamic processes modeling in electrolyzers at primary aluminum production. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2015;7:112-120. (In Russ.).


Review

For citations:


Noeiaghdam L., Noeiaghdam S., Sidorov D.N. Dynamical control on the Adomian decomposition method for solving shallow water wave equation. iPolytech Journal. 2021;25(5):623-632. https://doi.org/10.21285/1814-3520-2021-5-623-632

Views: 411


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)