Improving the quality of silicon metal by the method of x-ray radiometric separation of raw material and finished products
https://doi.org/10.21285/1814-3520-2020-5-1137-1149
Abstract
In this research, we investigate the process of X-ray radiometric separation of both raw materials (quartz, carbonaceous reducing agent) used for silicon smelting in ore-smelting furnaces and the resulting smelting products. The research objects were quartz from the Aktas field (Kazakhstan), coal from the Shubarkol field and silicon metal of various grades smelted at the Tau-Ken Temir LLP (Karaganda, Kazakhstan). X-ray diffraction analysis was performed using a Philips powder diffractometer. To determine the SiO2 and Fe2O3 content, an ARL PERFORM’X X-ray fluorescence spectrometer was used. To remove impurities, a СРF1-150М single-strand radiometric separator was used. We found that the radiometric separation of original quartz samples with the Fe2O3 content of ~ 0.1–0.15% produces pure quartz with the Fe2O3 content of ≤ 0.05% and a yield of 65–70%. Provided that the Fe2O3 content in the original quartz sample does not exceed 0.5%, concentrates with the Fe2O3 content of 0.05% and a yield of 35–55% can be obtained. The yield of pure quartz with the Fe2O3 content of 0.01% does not exceed 15–20%. The use of radiometric separation is established to reduce the amount of phosphorus in the final product by 2–3 times. This method is effective for obtaining coal concentrates of varying ash content (2.0, 4.1 and 7.3%); the resulting concentrated product obtained with a yield of 25% contains 1.5% of ash. Separation of silicon metal (with the initial iron content of 1.2–1.5%) yields a product matching silicon grade 773 (product yield ~ 50%), 553 (~ 35%) or 441 (20%). It is concluded that radiometric separation allows the content of impurities in quartz, silicon metal and coal ash to be reduced, thus facilitating the production of higher-grade silicon.
About the Authors
N. N. ZobninKazakhstan
Nikolay N. Zobnin, Cand. Sci. (Eng.), Associate Professor of the Department of Metallurgy and Materials Science; Production Engineer
30 Respubliki Ave., Temirtau 101400
accounting quarter 018, bldg 133, Oktyabrsky district, Karaganda 100018
S. V. Korobko
Kazakhstan
Sergey V. Korobko, Master of Engineering Sciences, Deputy Director General for Production
accounting quarter 018, bldg 133, Oktyabrsky district, Karaganda 100018
D. L. Vetkovsky
Kazakhstan
Dmitry L. Vetkovsky, Master of Engineering Sciences, Lecturer of the Department of Metallurgy and Materials Science
30 Respubliki Ave., Temirtau 101400
A. A. Moiseev
Kazakhstan
Andrey A. Moiseev, Master of Engineering Sciences, Lecturer of the Department of Metallurgy and Materials Science
30 Respubliki Ave., Temirtau 101400
A. O. Aganin
Kazakhstan
Aleksandr O. Aganin, Master of Engineering Sciences, Lecturer of the Department of Metallurgy and Materials Science
30 Respubliki Ave., Temirtau 101400
A. Kh. Nurumgaliev
Kazakhstan
Asylbek Kh. Nurumgaliev, Dr. Sci. (Eng.), Professor, Professor of the Department of Metallurgy and Materials Science
30 Respubliki Ave., Temirtau 101400
I. A. Pikalova
Kazakhstan
Irina A. Pikalova, Master of Metallurgy, Senior Lecturer at the Department of Metallurgy and Materials Science
30 Respubliki Ave., Temirtau 101400
References
1. Schei A, Tuset JKr, Tveit Н. Production of High Silicon Alloys. Trondheim: Tapir; 1998, 363 p.
2. Suponenko AN. New trends of silicon application in industry. Tsvetnyye metally i mineraly – 2016: sbornik tezisov dokladov VIII Mezhdunarodnogo kongressa = Non-Ferrous Metals & Minerals 2016: Book of abstracts of the Eighth International Congress. Krasnoyarsk 13–16 September 2016, Krasnoyarsk. Krasnoyarsk: Nauchnoinnovacionnyj centr; 2017, р. 130. (In Russ.)
3. Ragulina RI, Emlin BI. Electrothermics of Silicon and Silumin. Moscow: Metallurgiya; 1972, 239 р. (In Russ.)
4. Gasik MI, Gasik MM. Electrothermics of Silicon (physics-chemistry and technology). Dnepropetrovsk: National Metallurgical Academy of Ukraine; 2011, 487 р. (In Russ.)
5. Andresen B. The metallurgical silicon process revisited. In: Silicon for the Chemical And Solar Industry X: Proceedings of the International Conference. 28 June ‒ 2 July 2010, Ålesund – Geiranger. Ålesund – Geiranger; 2010, p. 11‒23.
6. Degel R, Fröhling C, Köneke M, Hecker E, Oterdoom H, Van Niekerk A. History and new milestones in submerged arc furnace technology for ferro alloy and silicon production. In: Infacon XIV – The Fourteenth International Ferro-Alloys Congress. 31 May – 4 June 2015, Kiev. Kiev; 2015, р. 7–16.
7. Nemchinova NV, Leonova MS, Tyutrin AA, Bel’skii SS. Optimizing the Charge Pelletizing Parameters for Silicon Smelting Based on Technogenic Materials. Metallurgist. 2019;63(1-2):115‒122. https://doi.org/10.1007/s11015-019-00800-3
8. Li Fei, Tangstad M, Solheim I. Quartz and carbon black pellets for silicon production. In: Infacon XIV: The Fourteenth International Ferroalloys Congress. 31 May – 4 June 2015, Kiev. Kiev; 2015, р. 390–401.
9. Ringdalen E. Changes in Quartz During Heating and the Possible Effects on Si Production. JOM. 2015;67(2):484– 492. https://doi.org/10.1007/s11837-014-1149-y
10. Zobnin NN. Effect of Thermal Stability of Quartz and Granulometric Composition of Charge Materials on the Process of Electrothermal Smelting of Metallurgical Silicon. In: Tsvetnyye metally i mineraly – 2017: sbornik dokladov IX Mezhdunarodnogo kongressa = Non-ferrous Metals & Minerals – 2017: book of papers of the Ninth International Congress. 11–15 September 2017, Krasnoyarsk. Krasnoyarsk: Nauchno-innovacionnyj centr; 2017, р. 779‒786. (In Russ.)
11. Nemchinova NV, Mineev GG, Tyutrin AA, Yakovleva AA. Utilization of Dust from Silicon Production. Steel in Translation. 2017;47(12):763–767. https://doi.org/10.3103/S0967091217120087
12. Safonov AA, Mausymbaeva AD, Portnov VS, Parafilov VI, Korobko SV. Analysis of Potential Use of Coal from the Shubarkol Deposit in Technical Silicon Smelting. Ugol'. 2019;2:68–72. http://doi.org/10.18796/0041-5790-2019-2-68-72
13. Nemchinova NV, Tyutrin AA, Zelinskaya EV. AcidicUltrasonic Refining of Silicon by Carbothermic Technology. Metallurgist. 2015;59(3):258–263. https://doi.org/10.1007/s11015-015-0094-5
14. Manel BF, Gallala W, Saadi A. Quartz sand beneficiation using magnetic and electrostatic separation to glass industries. Journal of New Technology and Materials. 2016;6(1):60–72. https://doi.org/10.12816/0043925
15. Bouabdallah S, Bounouala M, Chaib AS. Removal of iron from sandstone by magnetic separation and leaching: case of El-Aouana deposit (Algeria). Mining Science. 2015;22:33−44. https://doi.org/10.5277/msc152203
16. Deniz AF, Abakay TH, Bozkurt V. Removal of Impurities from tailing (quartz) obtained from bitlis kyanite ore by flotation method. International Journal of Applied Science and Technology. 2011;1(1):74–81.
17. Hacifazlioglu H. Enrichment of silica sand ore by cyclojet flotation cell. Separation Science and Technology. 2014;49(10):1623–1632. https://doi.org/10.1080/01496395.2014.893357
18. Tuncuk A, Akcil A. Removal of iron from quartz ore using different acids a laboratory-scale reactor study. Mineral Processing and Extractive Metallurgy Review. 2014;35(4):217–228. https://doi.org/10.1080/08827508.2013.825614
19. Zhang Zhizhen, Li Jingsheng, Li Xiaoxia, Huang Houquan, Zhou Lifen, Xiong Tiantian. High efficiency iron removal from quartz sand using phosphoric acid. International Journal of Mineral Processing. 2012;114-117:30– 34. https://doi.org/10.1016/j.minpro.2012.09.001
20. Ibrahim SS, Selim AQ, Hagrass AA. Gravity separation of silica sands for value addition. Particulate Science and Technology. 2013;31(6):590–595. https://doi.org/10.1080/02726351.2013.800930
21. Kheloufi A, Fathi M, Rahab H, Kefaifi A, Keffous A, Medjahed SA. Characterization and quartz enrichment of the Hoggar deposit intended for the electrometallurgy. Chemical Engineering Transactions. 2013;32:889–894. https://doi.org/10.3303/CET1332149
22. Von Ketelhodt L, Bergmann C. Dual energy X-ray transmission sorting of coal. Journal of the Southern African Institute of Mining and Metallurgy. 2010;110(7):371–378.
23. Zobnin NN, Mandryukov GV, Kuzembaeva AA. Operational aspects of silicon oxidereduction process and their effects on the material and thermal flows balance in carbothermic reactors. Oriental Journal of Chemistry. 2018;34(6):3079–3087. http://doi.org/10.13005/ojc/340651
Review
For citations:
Zobnin N.N., Korobko S.V., Vetkovsky D.L., Moiseev A.A., Aganin A.O., Nurumgaliev A.Kh., Pikalova I.A. Improving the quality of silicon metal by the method of x-ray radiometric separation of raw material and finished products. Proceedings of Irkutsk State Technical University. 2020;24(5):1137-1149. https://doi.org/10.21285/1814-3520-2020-5-1137-1149