Preview

iPolytech Journal

Advanced search

Simulation of combined reduction of iron and non-ferrous metals (nickel, copper, lead and zinc) from oxide melts by converted methane

https://doi.org/10.21285/1814-3520-2020-5-1113-1125

Abstract

The purpose of the article is to assess the application possibility of methane of various conversion methods (СО2, Н2О, О2) for combined reduction of iron and non-ferrous metals (nickel, copper, lead and zinc) from B2O3-CaO-Fe2O3-МеО oxide melts in the temperature range of 1273–1673 K. Thermodynamic modeling is carried out using a technique, which allows to estimate the variations in phase compositions depending on the amount of the reducing agent induced. The technique differs from the known ones by sequential calculation cycles with the removal of the formed gases and the metal phase from the working fluid composition. It is found that regardless of gas composition the process goes on in several stages. In the case of the combined reduction of iron and nickel (lead or zinc), the first stage is reduction of Fe2O3 to Fe3O4 and FeO. The content of Fe2O3 decreases, while the contents of FeO and Fe3O4 increase (at the end of the stage the content of Fe3O4 reaches its maximum value). At the second stage, there is the transition of Fe3O4 → FeO when the values of the contents of Fe2O3 and Fe3O4 decrease to negligible values. The third stage features the manifestation of the metallic phase. In the case of the combined reduction of iron and copper, the process can be divided into three stages according to the variations of the content of iron oxides, and into two stages according to the variations of the content of CuO and Cu2O. The first stage of iron reduction ends at the moment when the content of magnetite reaches its maximum value, the second stage finishes when the metallic phase appears. The first stage of copper reduction includes the transition of CuO to Cu2O and achievement of the maximum value of Cu2O content. The second stage includes the reduction of copper from Cu2O. A gas with the increased content of hydrogen, which corresponds to methane steam reforming is shown to be the most effective reducing agent. The results obtained make it possible to predict the parameters of the metal reduction process during oxide systems bubbling by methane conversion products. The results will be useful for the development of technologies for selective reduction of metals.

About the Authors

A. S. Vusikhis
Institute of Metallurgy Ural Branch of Russian Academy of Sciences
Russian Federation

Alexander S. Vusikhis, Cand. Sci. (Eng.), Senior Researcher

101, Amundsen St., Yekaterinburg 620016



L. I. Leontiev
Institute of Metallurgy Ural Branch of Russian Academy of Sciences
Russian Federation

Leopold I. Leontiev, Academician, Dr. Sci. (Eng.), Chief Researcher

101, Amundsen St., Yekaterinburg 620016



E. N. Selivanov
Institute of Metallurgy Ural Branch of Russian Academy of Sciences
Russian Federation

Evgeniy N. Selivanov, Dr. Sci. (Eng.), Head of the Laboratory of Non-Ferrous Metals Pyrometallurgy

101, Amundsen St., Yekaterinburg 620016



V. P. Chentsov
Institute of Metallurgy Ural Branch of Russian Academy of Sciences
Russian Federation

Viktor P. Chentsov, Cand. Sci. (Eng.), Senior Researcher

101, Amundsen St., Yekaterinburg 620016



References

1. Seregin PS, Popov VA, Tsemekhman LSh. New processing methods for zinc-, tin- and lead-containing materials. Tsvetnye metally. 2010;10:27–33. (In Russ.)

2. Dikhanbayev BI, Dikhanbayev AB. Development of energy-efficient method for processing industrial waste. Kompleksnoe ispol'zovanie mineral'nogo syr'ja = Complex Use of Mineral Resources. 2019;4:82–92. (In Russ.) https://doi.org/10.31643/2019/6445.41

3. Vusikhis AS, Selivanov EN, Tyushnyakov SN, Chentsov VP. Modeling the metal reduction from B2O3-CaOFe2O3-ZnO melts with CO-CO2 mixtures. Butlerovskie soobshhenija = Butlerov Communications. 2020;62:4:94– 98. (In Russ.)

4. Vusikhis AS, Dmitriev AN, Kudinov DZ, Leontiev LI. The study of liquid and gas phases interaction during the reduction of metal oxides from the melts by gas reductant in bubbled layer. In: The Third International Conference on Mathematical Modeling and Computer Simulation of Materials Technologies MMT-2004. 4–9 September 2004, Ariel. Ariel; 2004, р. 1-72–1-77.

5. Vusikhis AS, Leontiev LI, Selivanov EN, Chentsov VP. Modeling gas reduction of metals from a multicomponent oxide melt in a bubbling layer. Butlerovskie soobshhenija = Butlerov Communications. 2018;55:7:58–63. (In Russ.)

6. Fedorov AN, Malevsky AA, Idenbaum GV,Gladiuk EV. Behavior of non-ferrous metals at deeply oxidized slag reduction. Tsvetnye metally. 1995;11:7–10.(In Russ.)

7. Komkov AA, Kamkin RI, Kuznetsov AV, Karyaev VI. Copper recovery from slags during gas flush reduction. Tsvetnye metally. 2018;11:21–26. (In Russ.)

8. Starikh RV, Pakhomov RA. Features of oxidized nickel ore smelting in a bubbling unit. II. Experimental research. Metally. 2016;4:10–14. (In Russ.)

9. Fialkov AS. Carbon and carbon-based interlayer compounds and composites. Moscow: Aspect Press; 1997, 718 p. (In Russ.)

10. Petin SN, Burmakina AV, Kiryushina KS. New energy efficient ways of producing hydrogen for generating electrical and thermal energy. Energetika teplotekhnologij = Energetics of Thermal Technology. 2018;1:2–4. (In Russ.)

11. Arutyunov VS, Krylov OV. Oxidative conversion of methane. Uspehi himii. 2005;74 (12):1216–1245. (In Russ.) https://doi.org/10.1070/RC2005v074n12ABEH001199

12. Arutyunov VS. Oxidative conversion of natural gas. Moscow: Krasand; 2011, 590 p. (In Russ.)

13. Bondarenko BI, Shapovalov VA, Garmash NI. Technology and theory of cokeless metallurgy. Kiev: Naukova Dumka; 2003, 536 p. (In Russ.)

14. Astanovskiy DL, Astanovskiy LZ, Kustov PV. Highly effective way of synthesis gas production. Neftepererabotkai, neftekhimiya. Nauchno-tekhnicheskiye dostizheniya i peredovoy opyt. 2017;12:29–35. (In Russ.)

15. Potemkin DI, Uskov SI, Gorlova AM, Kirillov VA, Shigarov AB, Brayko AS, et al. Low-temperature steam conversion of natural gas to methane-hydrogen mixtures. Kataliz v promyshlennosti. 2020;20:3:184–189. (In Russ.) https://doi.org/10.18412/1816-0387-2020-3-184-189

16. Pugacheva AA, Razina GN. Plasma-chemical processing of carbon-containing compounds. Uspekhi v himii i himicheskoj tekhnologii. 2008;22(6):65–70. (In Russ.)

17. Pushkarev AI, Sazonov RV, Zhu Ai-Min, Li Hiao-Song. Methane conversion in low-temperature plasma. Himiya vysokih energij = High Energy Chemistry. 2009;43(3):202–208. (In Russ.)

18. Rutberg FG, Bratcev AN, Kuznecov VA, Nakonechnyj GV, Nikonov AV, Popov VE, et al. Synthesis-gas production by methane conversion in the plasma of water vapor and carbon dioxide. Pis'ma v zhurnal tekhnicheskoj fiziki. 2014;17:1–10. (In Russ.)

19. Sharafutdinov RG, Konstantinov VO, Fedoseev VI, Shchukin VG. Conversion of the natural and associated petroleum gas in a cold electron-beam plasma. Prikladnaya fizika. 2017;2:13–18. (In Russ.)

20. Morozov AN. Modern production of steel in arc furnaces. Chelyabinsk: Metallurgiya; 1987, 175 р. (In Russ.)

21. Dyudkin DA, Kislenko VV. Production of steel. Vol. 1. Processes of smelting, out-of-furnace treatment and continuous casting. Moscow: Teplotekhnik; 2008, 528 р. (In Russ.)

22. Dmitriev AN, Vusikhis AS, Sitnikov VA, Leontiev LI, Kudinov DZ. Thermodynamic modeling of iron oxide reduction by hydrogen from the B2O3–CaO–FeO melt in bubbled layer. Israel Journal of Chemistry. 2007;47(3- 4):299–302. https://doi.org/10.1560/IJC.47.3-4.299

23. Vusikhis AS, Leont’ev LI, Kudinov DZ, Selivanov EN. Thermodynamic modeling of nickel and iron reduction from multicomponent silicate melt in bubling process. Report 1. Reducing agent – a mixture of CO – CO2. Izvestiya vuzov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2018;61(9):731–736. (In Russ.) https://doi.org/10.17073/0368-0797-2019-9-731-736

24. Vusikhis AS, Leont’ev LI, Kudinov DZ, Selivanov EN. Thermodynamic modeling of nickel and iron reduction from multicomponent silicate melt in bubbling process. Report 2. Reducing agent – a mixture OF Н2 – Н2О. Izvestiya vuzov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2018;61(10):794–799. (In Russ.) https://doi.org/10.17073/0368-0797-2018-10-794-799


Review

For citations:


Vusikhis A.S., Leontiev L.I., Selivanov E.N., Chentsov V.P. Simulation of combined reduction of iron and non-ferrous metals (nickel, copper, lead and zinc) from oxide melts by converted methane. Proceedings of Irkutsk State Technical University. 2020;24(5):1113-1125. (In Russ.) https://doi.org/10.21285/1814-3520-2020-5-1113-1125

Views: 451


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)