Preview

iPolytech Journal

Advanced search

TO THE LOW-TEMPERATURE SYNTHESIS OF TITANIUM DIBORIDE

https://doi.org/10.21285/1814-3520-2018-2-153-165

Abstract

The PURPOSE of the paper is to determine the temperature ranges of dehydration and phase transformation of the initial components of the mixture of TiО2-B2О3-C - sucrose, hydrated titanium and boron oxides under different conditions of titanium diboride synthesis. METHODS. The method used in the study is thermal analysis of the reaction mixture on the STA 429CD (NETZSCH) synchronous thermal analysis unit using a platinum-platinum-rhodium holder for “TG + DSC” type samples in helium, argon, vacuum and air atmospheres. RESULTS AND THEIR DISCUSSION. Boric acid is transformed in three stages at the temperature range of 73 ÷ 450°C: at the first stage the removal of 1 mole of water causes the transformation of the orthoboric acid H2TiO3 into the metaboric HBO2 , which is transformed into boric anhydride В2О3 with further evaporation of moisture. The third stage features complete removal of moisture under the melting of boron oxide in the temperature range of 300 ÷ 600°C. The fluorine-doped titanium oxide TiO(OH)2-xFx loses moisture in the temperature range of 65-130°C, but its amorphous form TiO2-xFx undergoes its first phase transition to the crystal anatase modification of а-TiO2 only after heating above 700°C. The greatest transformation and reduction depth of titanium oxide occur when the reaction mixture is heated in the air atmosphere. Pyrolysis of sucrose C12H22O11 to complete removal of moisture and release of active carbon is a predominating process in a wide temperature range of 350÷740°C. CONCLUSIONS. Based on the thermal analysis results of the samples of the initial reaction composition under different atmospheric conditions the temperature ranges of the dehydration and transformation processes of mixture components have been determined. Found regularities must be accounted and applied under the low-temperature synthesis of titanium diboride TiB2

About the Authors

E. S. Gorlanov
EXPERT-AL LLC
Russian Federation


V. L. Ugolkov
Institute of Silicate Chemistry, Russian Academy of Sciences (ISC RAS)
Russian Federation


References

1. Кановская М. Сахар. Серия: Лекарство или яд. М.: АСТ, 2007. 159 с.

2. Позин М.Е. Технология минеральных солей (удобрений, пестицидов, промышленных солей, окислов и кислот): в 2 т. Борный ангидрид, ч. 1; 4-е изд. Л.: Химия, 1974. 792 с.

3. Григоровская В.А., Шашкин Д.П., Западинский Б.И. О низкотемпературных превращениях ортоборной кислоты // Химическая физика. 2009. Т. 28. № 8. С. 72-77.

4. Balci S. Boron oxide production kinetics using boric acid as raw material / S. Balci, N.A. Sezgi, E. Eren // Ind Eng Chem Res. 2012. Vol. 51. № 34. P. 11091-11096.

5. Derun, E. M. Characterization and Thermal Dehydration Kinetics of Highly Crystalline Mcallisterite, Synthesized at Low Temperatures / E.M. Derun and F.T. Senberber // The Scientific World Journal. 2014. Vol. 2014. 10 p.

6. Андрущенко В.П., Кашурин А.Н. Термический анализ сахаросодержащих сиропов // Известия ВУЗов. Пищевая технология. 1990. № 4. С. 89-91.

7. Sevim F., Demir F., Bilen M. and Okur H. Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data // Korean Journal of Chemical Engineering. 2006. Vol. 23. № 5. P. 734-738.

8. Derun E.M., Kipcak A.S., Senberber F.T. and Yilmaz M.S. Characterization and thermal dehydration kinetics of admontite mineral hydrothermally synthesized from magnesium oxide and boric acid precursor // Research on Chemical Intermediates. 2015. Vol. 41. Issue 2. P. 853-866.

9. Rotaru A. Thermal and kinetic study of hexagonal boric acid versus triclinic boric acid in air flow // J. Therm. Anal. Calorim. 2016. Vol. 127. P. 755-63.

10. Nazarenko O.B., Bukhareva P.B., Melnikova T.V., Visakh P.M. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers // Journal of Physics. Conference Series. 2016. Vol. 671. No. 1. 012041 р.

11. Aghili. S., Panjepour M., Meratian M. Kinetic analysis of formation of boron trioxide from thermal decomposition of boric acid under non-isothermal conditions // Journal of Thermal Analysis and Calorimetry. 2017. P. 1-13.

12. Седнева Т.А., Локшин Э.П., Беляевский А.Т., Калинников В.Т. Зависимость фазовых переходов и фотокаталитической активности наноразмерного диоксида титана от допирования фторид-ионами // Перспективные материалы. 2007. № 6. С. 49-55.

13. Смирнова В.В. Божко П.В., Коновчук Т.В. Разработка технологии получения нанопористого сорбента на основе диоксида титана для очистки питьевой воды // Современные техника и технологии: сборник трудов XVIII Международной научно-практической конференции студентов, аспирантов и молодых ученых: в 3 т. (г. Томск, 9-13 апреля 2012 г). Томск, 2012. Т. 3. С. 393-394.

14. Горланов Е.С., Бажин В.Ю., Федоров С.Н. Низкотемпературное фазообразование в системе Ti-B-C-O // Цветные металлы. 2017. № 8. С. 76-81.


Review

For citations:


Gorlanov E.S., Ugolkov V.L. TO THE LOW-TEMPERATURE SYNTHESIS OF TITANIUM DIBORIDE. Proceedings of Irkutsk State Technical University. 2018;22(2):153-165. (In Russ.) https://doi.org/10.21285/1814-3520-2018-2-153-165

Views: 188


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)