Preview

iPolytech Journal

Advanced search

Use of all-mode modeling complex for power systems with distributed generation

https://doi.org/10.21285/1814-3520-2019-1-75-89

Abstract

Today, the number of distributed generation facilities in the world is growing mainly due to renewable energy sources. However, the integration of a large volume of distributed generation (on the basis of wind power plants) into the existing electric power systems of power grids is associated with a number of significant problems. A comprehensive study and absolute solution of these problems require to conduct a detailed simulation of real electric power systems, which is impossible with the use of existing means. Therefore, for this purpose, the article proposes to use an alternative solution - an All-Mode real time modeling complex of power systems (AMRTMC PS). The conducted experimental studies involved the comparison of the modeling results of a small test circuit of electric power systems obtained by means of the AMRTMC PS and a widely used digital software and hardware complex RTDS. The article partially presents the results of complex comparison when reproducing similar models of electric power systems in both complexes, which confirm the adequacy of the information about the processes in equipment and electric power systems in general obtained by means of the real-time all-mode modeling complex of electric power systems. It is proved that the further application of the real-time all-mode modeling complex of electric power systems as a tool for detailed and adequate modeling of real electric power systems with distributed generation will provide complete and reliable information about normal and abnormal quasi-steady-state and transient processes in electric power systems with distributed generation, which is necessary for reliable and effective solution of design problems, research and subsequent operation of electric power systems with distributed generation.

About the Authors

A. B. Askarov
National Research Tomsk Polytechnic University
Russian Federation


A. A. Suvorov
National Research Tomsk Polytechnic University
Russian Federation


M. V. Andreev
National Research Tomsk Polytechnic University
Russian Federation


References

1. Renewables 2018 Global Status Report [Электронный источник]. URL: http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_-1.pdf (02.10.2018).

2. Кучеров Ю.Н., Березовский П.К., Федоров Ю.Г., Губарева Ю.В. Исследовательский комитет С6 «Системы распределения электроэнергии и распределенная генерация» // Энергетика за рубежом. 2014. № 1-2. С. 161-180.

3. Нудельман Г., Онисова О. Релейная защита и автоматика в условиях развития малой распределенной энергетики // Электроэнергия. Передача и распределение. 2014. № 4 (25). С. 106-114.

4. Telukunta V., Pradhan J., Agrawal A., Singh M., Srivani S.G. Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE Journal of Power and Energy Systems. 2017. Vol. 3. No. 4. P. 365-379. DOI: 10.17775/CSEEJPES.2017.00030

5. Atwa Y.M., El-Saadany E.F. Reliability Evaluation for Distribution System with Renewable Distributed Generation during Islanded Mode of Operation. IEEE Transactions on Power Systems. 2009. Vol. 24. No. 2. P. 572-581. DOI: 10.1109/TPWRS.2009.2016458

6. He L., Liu C.C., Pitto A., Cirio D. Distance protection of AC grid with HVDC-connected offshore wind generators. IEEE Transactions on Power Delivery. 2014. Vol. 29. No. 2. P. 493-501. DOI: 10.1109/TPWRD.2013.2271761

7. Muljadi E., Zhang Y.C., Gevorgian V., Kosterev D. Understanding dynamic model validation of a wind turbine generator and a wind power plant. IEEE Energy Conversion Congress and Exposition (ECCE). 2016. P. 1-5. DOI: 10.1109/ECCE.2016.7855542

8. Carreras B.A., Newman D.E., Dobson I. Does size matter? Chaos: An Interdisciplinary Journal of Nonlinear Science. 2014. Vol. 24. No. 2. P. 1-7. DOI: 10.1063/1.4868393

9. Watson N., Arrillage J. Power systems electromagnetic transients simulation. London, UK: The Institution of Engineering and Technology. 2003. P. 351-358.

10. Butcher J. C. Numerical methods for ordinary differential equations: early days in the birth of numerical analysis. 2nd ed., Hoboken, New Jersey, USA: John Wiley & Sons. 2008. P. 31-40.

11. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и алгебро-дифференциальные задачи / пер. с англ. М.: Мир, 1999. 612 с.

12. Бабушка И., Витасек Э., Прагер М. Численные процессы решения дифференциальных уравнений / пер. с англ. М.: Мир, 1969. 368 с.

13. Холл Д., Уатт Д. Современные численные методы решения обыкновенных дифференциальных уравнений / пер. с англ. М.: Мир, 1979. 312 с.

14. Герасимов А.С., Есипович А.Х., Смирнов А.Н. Об опыте верификации цифровых и физических моделей энергосистем // Электрические станции. 2010. № 11. С. 11-19.

15. Kosterev D., Taylor C., Mittelstadt W. Model Validation for the August 10, 1996 WSCC System Outage. IEEE Transactions on Power Systems. 1999. Vol. 14. No. 3. P. 967-979. DOI: 10.1109/59.780909

16. Chen Y., Dinavahi V. Multi-FPGA digital hardware design for detailed large-scale real-time electromagnetic transient simulation of power systems. IET Generation, Transmission & Distribution. 2013. Vol. 7. No. 5. P. 451-463. DOI: 10.1049/iet-gtd.2012.0374

17. Liang Y., Lin X., Gole A.M., Yu M. Improved coherency-based wide-band equivalents for real-time digital simulators. IEEE Transactions on Power Systems. 2011. Vol. 26. No. 3. P. 1410-1417. DOI: 10.1109/TPWRS.2010.2085456

18. Shu D., Xie X., Jiang Q., Huang Q., Zhang C. A novel interfacing technique for distributed hybrid simulations combining EMT and transient stability models. IEEE Transactions on Power Delivery. 2018. Vol. 33. No. 1. P. 130-140. DOI: 10.1109/TPWRD.2017.2690145

19. Андреев М.В., Боровиков Ю.С., Гусев А.С., Сулайманов А.О., Суворов А.А., Рубан Н.Ю., Уфа Р.А. Концепция и базовая структура всережимного моделирующего комплекса // Газовая промышленность. 2017. № 5 (752). С. 18-27.

20. Гусев А.С., Хрущев Ю.В., Гурин С.В., Свечкарев С.В., Плодистый И.Л. Всережимный моделирующий комплекс реального времени электроэнергетических систем // Электричество. 2009. № 12. С. 5-8.

21. Andreev M.V., Sulaymanov A.O. Platform based on Hybrid Real-Time Power System Simulator for development and research of Intelligent Power Systems with active-adaptive networks. IEEE Eindhoven PowerTech. 2015. P. 1-6. DOI: 10.1109/PTC.2015.7232239

22. Andreev M., Gusev A., Ruban N., Suvorov A., Ufa R., Askarov A., Bems J., Kralik T. Hybrid Real-Time Simulator of Large-Scale Power Systems. IEEE Transactions on Power Systems. (in print) DOI: 10.1109/TPWRS.2018.2876668


Review

For citations:


Askarov A.B., Suvorov A.A., Andreev M.V. Use of all-mode modeling complex for power systems with distributed generation. Proceedings of Irkutsk State Technical University. 2019;23(1):75-89. (In Russ.) https://doi.org/10.21285/1814-3520-2019-1-75-89

Views: 248


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)