Preview

iPolytech Journal

Advanced search

EFFECT OF SILICON CARBIDE PARTICLES WETTING ABILITY BY MAGNESIUM IN ALUMINUM COMPOSITE LIGATURES ON THEIR MECHANICAL PROPERTIES

https://doi.org/10.21285/1814-3520-2018-12-211-220

Abstract

The paper deals with the possibilities to improve the efficiency of the production technology of aluminum composite ligatures and alloys modified by silicon carbide particles produced from waste sidelining of aluminum electrolyzers. This enables the production of blanks and items with a high level of mechanical properties and plasticity. Rational wettability conditions of silicon carbide particles and their surface coating with magnesium are identified. The latter affects the distribution uniformity in the aluminum matrix as well as determines the mechanism action and formation kinetics of a homogeneous structure in the preparation of a composite aluminum ligature. The paper employs modern analysis methods using up-to-date analytical equipment, in particular Quantachrome Nova 3200e surface area analyzer. The level of wettability and the coating degree of silicon carbide particles is determined after their mechanical treatment and after their immersion in magnesium melt. The distribution uniformity of particles in the micro-volume of the aluminum matrix is proved by using XRF-1800 (Shimadzu) x-ray fluorescent spectrometer. Samples have been subjected to mechanical testing (tensile strength, hardnesschanical testing of samples, specific elongation) when agreeing structural changes at the macro and micro level which confirm the improved performance at a high value of particle wettability by magnesium in the aluminum matrix. The results of the experiments show that the developed technology is effective for obtaining a uniform dispersion when introducing reinforcing particles in the aluminum matrix by means of magnesium ligatures. The higher the number of silicon carbide particles - the higher the strength and impact toughness. The best results were obtained with the magnesium content of 7-8 % in the presence of 18-20 % of silicon carbide particles SiC.

About the Authors

E. M. Gutema
St. Petersburg Mining University
Russian Federation


V. Yu. Bazhin
St. Petersburg Mining University
Russian Federation


References

1. Bazhin V.Y., Gutema E.M., Savchenkov S.A. Production Technology Features for Aluminum Matrix Alloys with a Silicon Carbide Framework // Metallurgist. 2017. Vol. 60. No. 11-12. P. 1267-1272.

2. Фридляндер И.Н. Алюминиевые деформируемые конструкционные сплавы. М.: Металлургия. 1979. 208 с.

3. Фридляндер И.Н. Современные алюминиевые, магниевые сплавы и композиционные материалы на их основе // Металловедение и термическая обработка металлов. 2002. № 7. С. 24-29.

4. Квасов Ф.И., Фридляндер И.Н. Алюминиевые сплавы типа дуралюмин. М.: Металлургия. 1984. 240 с.

5. Напалков В.И., Бондырев Б.И., Тарарышкин В.И., Чухров М.В. Лигатуры для производства алюминиевых и магниевых сплавов. М.: Металлургия. 1983. 160 c.

6. Махов С.В. Научное и технологическое обоснование разработки и применения модифицирующих лигатур // Металлургия машиностроения. 2012. № 1. С. 10-15.

7. Платов Ю.М., Вотинов С.Н., Дриц М.Е. Исследование механических свойств сплавов на основе алюминия // Физика и химическая обработка материалов. 1981. № 1. С. 53-55.

8. Yang L. J. The effect of casting temperature on the properties of squeeze cast aluminum and zinc alloys// Journal of Material Processing. 2003. Vol. 68. No. 11. P. 61-63.

9. Casati R. and Vedani M. Metal Matrix Composites Reinforced by Nano-Particles-A Review // Metals. 2014. Vol. 4. No. 1. P. 65-83.

10. Gupta N., Satyanarayana K.G. Solidification Processing of Metal Matrix Composite// Journal of Materials Science. 2006. Vol. 58. No. 11. P. 91-93.

11. Wessel J.K. The Handbook of Advanced Materials. New Jersey, USA: John Wiley & Sons Inc. 2004. P. 120-160.

12. Zhou W. and Xu Z.M. Casting of SiC reinforced metal matrix composites // Journal Material Processing Technology. 1997. Vol. 63. Issue 1-3. P. 358-363.

13. Boi D. and Mitkov M. The influence of SiC particles on the compressive properties of metal matrix composites // Materials Characterization. 2001. Vol. l47. P. 129-138.

14. Dieter G. E. Mechanical Metallurgy. 2nd ed., New York, NY: McGraw-Hill Book Co., 1976. P. 282-293.

15. Hashim J., Looney L., Hashmi M.S.J. The wettability of SiC particles by molten aluminum alloy // Journal of Material Processing. 2001. Vol. 119. P. 324-328.

16. Baron H.G. Stress-Strain curves of some metals and alloys at low temperature and high rates of strain // Journal of Iron and Steel Institute.1956. Vol. 182. P. 124-128.

17. Яценко С.П., Хохлова Н.А., Яценко А.С. Получение лигатур на основе алюминия методом высокотемпературных обменных реакций в расплавах солей I. рафинирование алюминия от натрия // Расплавы. 2008. № 5. С. 31-35.

18. Федотов И.Л., Ульянов Д.С. Особенности входного контроля модифицирующих алюминиевых лигатур // Цветные металлы-2012: сб. научн. статей. Красноярск, 2012. С. 710-714.

19. Jakes J.E., Frihart C.R., Beecher J.F., Moon R.J., and Stone D.S. Experimental method to account for structural compliance in Nano-indentation measurements // Journal material Research. 2008. Vol. 23. No. 4. P. 1113.

20. Lucas J.P., Stephens J.J., Greulich F.A. The effect of reinforcement stability on composition redistribution in cast aluminium metal matrix composites // Material Science and Engineering. 1991. Vol. 131 (2). P. 221-230.

21. ASTM Int., ASTM E10-15: Standard Test Method for Brinell hardness of Metallic Materials, ASTM Stand. 2012. P. 1-32.

22. ASTM-E399-83, Annual book of ASTM Standards, ASTM, and Philadelphia. 1989. P. 487.

23. Kala H., Mer K.K.S and Kumar S. A Review on Mechanical and Tribological Behaviors of Stir Cast Aluminum Matrix Composites// Procedia Material Science. 2014. Vol. 6. P. 1951-1960.

24. Canakci A. and Arslan F. Abrasive wear behavior of B4C particle reinforced Al2024 metal matrix composites // International Journal of Advanced Manufacturing Technology. 2012. Vol. 63. P. 785-795.

25. Torralba J.P Aluminum Matrix Composites: An Overview // Journal of Materials Processing Technology. 2003. Vol. 133. No. 1-2. P. 203-206.


Review

For citations:


Gutema E.M., Bazhin V.Yu. EFFECT OF SILICON CARBIDE PARTICLES WETTING ABILITY BY MAGNESIUM IN ALUMINUM COMPOSITE LIGATURES ON THEIR MECHANICAL PROPERTIES. Proceedings of Irkutsk State Technical University. 2018;22(12):211-220. (In Russ.) https://doi.org/10.21285/1814-3520-2018-12-211-220

Views: 196


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)