Preview

iPolytech Journal

Advanced search

STUDY OF A MULTI-POWER FACILITY BY SIMULATION MODELING METHODS

https://doi.org/10.21285/1814-3520-2018-12-157-168

Abstract

The purpose of the paper is to consider the design principles of the multi-power hub simulation model, study the power facility by the methods of simulation modeling, analyze the economic efficiency of accumulation of electric power and its conversion into heat energy. The set problem is solved using the theory of energy hubs and the principles of simulation modeling in the MatLab system. The article describes the technical feasibility of a multi-power system implementation. The function block diagram of a multi-power facility made in the MatLab environment is presented. The economic efficiency of multi-power hub principle application is analyzed on example of electric energy accumulation and conversion into heat. The case study shows the efficiency of the developed software for energy hub modeling. The article presents the construction principles of the simulation model of the integrated multi-power system of power supply based on the concept of a power hub. An example of developed simulation model application is given. The proposed approach offers a broad perspective for the study of many significant problems in the integrated power systems with multiple carriers including their properties, features of their growth and operation. This article makes the first small contribution to the discussed important research direction.

About the Authors

N. I. Voropai
Melentiev Energy Systems Institute SB RAS
Russian Federation


E. V. Ukolova
Melentiev Energy Systems Institute SB RAS; Irkutsk National Research Technical University
Russian Federation


D. O. Gerasimov
Irkutsk National Research Technical University
Russian Federation


K. V. Suslov
Irkutsk National Research Technical University
Russian Federation


P. Lombardi
Institute IFF Magdeburg
Russian Federation


P. Komarnicki
University of applied science Magdeburg-Stendal
Russian Federation


References

1. Geidl M., Koppel G., Favre-Perrod P., Klokl B., Andersson G., Frohlich K., Energy hubs for the future // IEEE Power and Energy Magazine. 2007. Vol. 5. No. 1. P. 24-30.

2. Воропай Н.И., Стенников В.А. Интегрированные интеллектуальные энергетические системы // Известия Российской академии наук. Энергетика. 2014. № 1. С. 64-73.

3. Le Blond S., Lewis T., Sooriyabandara M., Towards an integrated approach to building energy efficiency: Drivers and enablers // IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK. 2011. P. 1-8.

4. Krause T., Kienzle F., Liu Yang, Andersson G., Modeling interconnected national energy systems using an energy hub approach // IEEE Power Tech Conference, Trondheim, Norway. 2011. P. 1-7.

5. Mohammadi М., Noorollahi Y., Mohammadi-ivatloo B., Hosseinzadeh M., Torabzadeh Khorasani S. Optimal management of energy hubs and smart energy hubs - A review // Renewable and Sustainable Energy Reviews. Vol. 89. June 2018. P. 33-50.

6. Vahid Davatgaran V., Mohsen Saniei M., Saeidollah Mortazavi S. Optimal bidding strategy for an energy hub in energy market // Energy. 2018. Vol. 148. P. 482-493.

7. Koppel G., Andersson G., Reliability modeling of multi-carrier energy systems // Energy. 2009. Vol. 34. P. 235-244.

8. Khorsand H., Reza Seifi A. Probabilistic energy flow for multi-carrier energy systems // Renewable and Sustainable Energy Reviews. 2018. Vol. 94. P. 989-997.

9. Wang J., Zhong H., Ma Z., Xia Q., Kang C. Review and prospect of integrated demand response in the multi-energy system // Applied Energy. 2017. Vol. 202. P. 772-782.

10. Moeini-Aghtaie M., Abbaspour A., Fotuhi-Firuzabad M., Hajipour E., A decomposed solution to multiple energy carriers optimal power flow // IEEE Transactions on Power Systems. 2014. Vol. 29. No. 2. P. 707-716.

11. Xiaping Z., Shahidehpour M., Alabdulwahab A., Abusorrah A., Optimal expansion planning of energy hub with multiple energy infrastructures // IEEE Transactions on Smart Grid. 2015. Vol. 6. No. 5. P. 2302-2311.

12. Beccuti G., Demiray T., Batic M., Tomasevic N., Vranes S., Energy hub modeling and optimization: An analytical case study // IEEE Power Tech, Eindhoven, Netherlands, 2015. P. 1034-1040.

13. Tronchin L., Manfren M., Nastasi B. Energy efficiency, demand side management and energy storage technologies - A critical analysis of possible paths of integration in the built environment // Renewable and Sustainable Energy Reviews. 2018. Vol. 95. P. 341-353.

14. А. с. 2018611255. Свидетельство об официальной регистрации программы для ЭВМ. Программа для определения характеристик и оптимальных параметров функционирования мульти-энергетической системы / Герасимов Д.О., Суслов К.В., Уколова Е.В., Уколова Е.В.; заявитель и правообладатель ФГБОУ ВО «ИРНИТУ» (РФ). № 2017662368; заявл. 30.11.17; опубл. 26.01.18. Реестр программ для ЭВМ. 1 с.


Review

For citations:


Voropai N.I., Ukolova E.V., Gerasimov D.O., Suslov K.V., Lombardi P., Komarnicki P. STUDY OF A MULTI-POWER FACILITY BY SIMULATION MODELING METHODS. Proceedings of Irkutsk State Technical University. 2018;22(12):157-168. (In Russ.) https://doi.org/10.21285/1814-3520-2018-12-157-168

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)