Preview

iPolytech Journal

Advanced search

MODEL AND CALCULATION OF ADHESION ENERGY OF TOOL AND PROCESSED MATERIAL CONTACT INTERACTION

https://doi.org/10.21285/1814-3520-2018-12-125-134

Abstract

The process of electric powered grinding by diamond wheels on a metal bond has been improved and the self-sharpening mode has been justified on the basis of the calculations of adhesion energy in the contact zone of tool and processed materials. Comprehensive studies of electric powered diamond grinding are performed on the example of hard alloy tool sharpening with consideration of the critical analysis of the literature data, manufacturing experience and the authors’ own researches using modern equipment and raster microscopy. Since clogging and wheel cutting property loss require periodic dressing, it is necessary to create the operation conditions of diamond wheels on a metal bond in the self-sharpening mode, when the specific consumption of diamond wheels is minimal. On the basis of the proposed model and mathematical formula for adhesion energy calculation, theoretical and experimental data are obtained for adhesion energy estimation depending on the dressing current density and effective grinding power. The values of the adhesion energy are found for the elements of the metal bonds and the elements of mineral ceramic hard alloys. The calculations have shown that the combined method of electric powered diamond grinding with simultaneous continuous electrochemical dressing of the wheel allows to reduce the adhesion energy level to the one when the surface energy of the adhesion interaction of the processed material and the elements of the diamond wheel is lower than the adhesion energy in the contact zone. In these conditions, clogging does not occur. These conditions include the dressing current density of the diamond wheel in the range from 0.25 to 0.45 A/cm2. It is determined that in accordance with the proposed model and on the basis of a mathematical formula for adhesion energy calculation, the combined method of electric powered diamond grinding with simultaneous continuous electrochemical dressing of the wheel allows to reduce the level of adhesion energy to the level when the surface energy of the adhesion interaction of the processed material and diamond wheel elements will be lower than the adhesion energy in the contact zone. Clogging does not occur in these conditions. It has been determined experimentally that the most rational value of the dressing current density, at which the self-sharpening mode is achieved, can be considered the value of iпр from 0.25 to 0.4 A/cm2. It has been found out that the combined electrochemical grinding with simultaneous electrochemical dressing of the wheel decreases the effective power by 4 times in comparison with grinding without the use of electric current.

About the Authors

A. S. Yanyushkin
Chuvashskiy State University named after I.N. Ulianov
Russian Federation


L. S. Sekletina
Chuvashskiy State University named after I.N. Ulianov
Russian Federation


V. A. Gartfelder
Chuvashskiy State University named after I.N. Ulianov
Russian Federation


D. V. Lobanov
Chuvashskiy State University named after I.N. Ulianov
Russian Federation


References

1. Степанов Ю.С., Белкин Е.А., Барсуков Г.В. Моделирование микрорельефа абразивного инструмента и поверхности детали. М.: Машиностроение - 1.2004. 214 с.

2. Янюшкин А.С., Архипов П.В., Торопов В.А. Механизм засаливания шлифовальных кругов // Вестник машиностроения. 2009. № 3. С. 62-69.

3. Малышев В.И., Попов А.Н. Имитационная модель процесса шлифования с вибрационной правкой шлифовального круга // Известия Самарского научного центра Рос. Акад.наук. 2010. Т. 12. № 4-4. С. 923-925.

4. Yanyushkin A., Lobanov D., Arkhipov P., Ivancivsky V. Contact processes in grinding // Applied Mechanics and Materials. 2015. Т. 788. С. 17-21.

5. Носенко В.А. Влияние контактных процессов на износ круга при шлифовании // Инструмент и технологии. 2004. № 17-18. С. 162-167.

6. Янюшкин А.С., Лобанов Д.В., Мулюхин Н.В. Пути решения проблем формообразования режущего инструмента для обработки неметаллических композитов // Обработка металлов (технология, оборудование, инструменты). 2018.Т. 20. № 3. С. 36-46. DOI: 10.17212/1994-6309-2018-20.3-36-46.

7. Lobanov D.V., Yanyushkin A.S., Rychkov D.A., Petrov N.P. Optimal organization of tools for machining composites // Russian Engineering Research. 2011. T. 31. № 2. C. 156-157.

8. Васильев Е.В., Попов А.Ю., Реченко Д.С. Алмазное шлифование твердосплавных пластин // СТИН. 2012. № 5. С. 7-10.

9. Янюшкин А.С., Лобанов Д.В., Скиба В.Ю., Гартфельдер В.А., Секлетина Л.С. Повышение эффективности алмазного инструмента на металлической связке при шлифовании высокопрочных материалов // Обработка металлов (технология, оборудование, инструменты). 2017. № 3 (76). С. 17-27.

10. Братан С.М., Сидоров Д.Е., Ревенко Д.В Моделирование съема материала при шлифовании поверхностей с введением в зону обработки дополнительной электрической энергии // ВiсникСевНТУ. 2011. № 118. С. 6-14.

11. Козлов А.М., Боглов Д.В. Моделирование совмещенной абразивной обработки // Фундаментальные и прикладные проблемы техники и технологии. 2010. № 2. С. 50-53.

12. Strelchuk P.M. The energy intensity analysis of the diamond-spark grinding of the WolKarnanostructural hard alloy / P.M. Strelchuk, M.D. Uzunyan // Journal of Superhard Materials. 2010. Vol. 32. P. 50-54.

13. Lobanov D.V., Arkhipov P.V., Yanyushkin A.S., Skeeba V.Yu. The research into the effect of conditions of combined electric powered diamond processing on cutting power // Key Engineering Materials. 2017. Т. 736. С. 81-85.

14. Geng Zhi, Li Xuekun, Qian Zhiqiang, Liu Haitao, Rong Yiming Experimental study of time-dependent performance in superalloy high-speed grinding with CBN wheels // Machining Science and Technology. 2016. Vol. 20. P. 615-633.

15. Mogilnikov V.A., Chmir M.Y., Timofeev Y.S., Poluyanov V.S. Diamond-ECM Grinding of sintered hard alloys of WC-Ni // Procedia CIRP. 2016. Vol. 42. P. 143-148.

16. Худобин Л.В., Унянин А.Н. Минимизация засаливания шлифовальных кругов. Ульяновск: Изд-во УлГТУ, 2007. 298 с.

17. Овчаренко А.Г., Козлюк А.Ю., Курепин М.О., Тюрин А.Г., Терентьев Д.С. Исследование влияния комбинированной магнитно-импульсной обработки на качество твердосплавного инструмента // Обработка металлов (технология, оборудование, инструменты). 2011. № 3. С. 95-98.

18. Веселов С.В., Щербаков В.И., Черкасова Н.Ю. Особенности строения вольфрамокобальтового покрытия сформированного на стальной поверхности при использовании промежуточного слоя хрома // Обработка металлов (технология, оборудование, инструменты). 2012. № 4. С. 68-71.

19. Майборода В.С., Ульяненко Н.В., Дюбнер Л.Г. Застосуваннямагнітно-абразивноїобробки для зміцненнярізальногоінструменту // Вищийнавчальний заклад технологiчногопрофiлю в Житомирськомурегiонi. 2003. № 3 (27). С. 22-31.

20. Kim C.S., Massa T.R., Rohrer G.S. Modeling the Relationship Between Microstructural Features and the Strength of WC-Co Composites // Int. J. Ref. Metals. Hard. Mater, 2006. 24 (1-2). P. 89-100.

21. Ковалев В.Д., Васильченко Я.В., Клименко Г.П., Андронов А.Ю., Ткаченко Н.А. Применение обработки импульсным магнитным полем для упрочнения деталей машин и режущего инструмента // Вестник двигателестроения. 2004. № 4. С. 149-151.


Review

For citations:


Yanyushkin A.S., Sekletina L.S., Gartfelder V.A., Lobanov D.V. MODEL AND CALCULATION OF ADHESION ENERGY OF TOOL AND PROCESSED MATERIAL CONTACT INTERACTION. Proceedings of Irkutsk State Technical University. 2018;22(12):125-134. (In Russ.) https://doi.org/10.21285/1814-3520-2018-12-125-134

Views: 210


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)