Preview

iPolytech Journal

Advanced search

ENERGY EFFICIENT CONTROL OF POLYMER MATERIAL HIGH FREQUENCY PROCESSING

https://doi.org/10.21285/1814-3520-2018-12-86-95

Abstract

The article deals with the formation of general approaches for energy efficiency provision and improvement of the performance of technological processes of polymer high-frequency electrothermy. The research was carried out on the basis of physics and chemistry of polymer materials, thermodynamics, electrical engineering and fundamentals of automated system design. Experimental studies involved the use of the control methods of heat deformations and fields. A functional diagram of automated control systems of technological processes of high-frequency electrothermy is presented. The tasks are identified that are solved at control implementation by individual technological processes of high frequency electrothermy (drying and welding of polymer parts). Control process cyclograms are specified. The principles and general approaches to the control organization of high-frequency heating of polymers are determined. They have been formed on the basis of the need to build a universal automated control system of technological processes and provision of energy efficiency, high performance of technological processes of high-frequency processing of polymers. According to the discussed approaches, it is shown that the transition to processing in the area of the maximum possible voltages of the operating capacitor of the electrothermal equipment Up provides the possibility to save up to 30-40% of energy costs and 70% of processing time.

About the Authors

A. V. Livshits
Irkutsk State Transport University
Russian Federation


S. K. Kargapoltsev
Irkutsk State Transport University
Russian Federation


N. G. Filippenko
Irkutsk State Transport University
Russian Federation


D. V. Butorin
Irkutsk State Transport University
Russian Federation


References

1. Филиппенко Н.Г., Буторин Д.В., Каргапольцев С.К., Лившиц А.В. Физико-технические процессы в технологических операциях термической, механической, высокочастотной и ультразвуковой обработки полимерных и композитных конструкционных материалов. Иркутск: Изд-во Иркутского государственного университета путей сообщения. 2017. 254 с.

2. Лившиц А.В. Управление технологическими процессами высокочастотной электротермии полимеров // Проблемы машиностроения и автоматизации. 2015. № 3. С. 120-126.

3. Livshits A.V., Filippenko N.G., Homenko A.P., Kargapoltsev S.K., Gozbenko V.E., Dambaev Z.G. Mathematical modeling of the processes of the high-frequency heating of thermoplasts and quality improvement of welded polymeric items. JP Journal of Heat and Mass Transfer. 2017. Pushpa Publishing House, Allahabad, India http://www.pphmj.com http://dx.doi.org/10.17654/HM014020219. 2017. Vol. 14. Nо. 2. P. 219-226.

4. Филиппенко Н.Г., Буторин Д.В., Лившиц А.В. Определение фазовых и релаксационных переходов в полимерных материалах // Автоматизация. Современные технологии. 2017. Т. 71. № 4. С. 171-175.

5. Буторин Д.В., Лившиц А.В., Филиппенко Н.Г. Комплексированный метод автоматизированного высокочастотного контроля фазовых превращений в полимерных материалах // Приборы и системы. Управление, контроль, диагностика. 2016. № 10. С. 10-18.

6. Лившиц А.В. Автоматизированная система научных исследований высокочастотной электротермии // Проблемы машиностроения и автоматизации. 2015. № 4. С. 54-60.

7. Popov M.S., Livshits A.V., Filippenko N.G., Popov S.I., Popov A.S. The Automated Experimental Study of the Combined Treatment of Polymeric Materials. Proceedings of the 6th International Symposium on Innovation and Sustainability of Modern Railway, ISMR 2018. Irkutsk: Irkutsk state University of railway engineering Publ., 2018. P. 496-500.

8. Филиппенко Н.Г., Буторин Д.В., Лившиц А.В., Попов М.С., Гозбенко В.Е. Автоматизация измерения температуры полимерного материала при высокочастотном электротермическом нагреве // Современные технологии. Системный анализ. Моделирование. 2017. № 1 (53). С. 96-103.

9. Буторин Д.В., Лившиц А.В., Филиппенко Н.Г. Автоматизация процесса контроля фазовых и релаксационных превращений в полимерных материалах // Информационные системы и технологии. 2017. № 1 (99). С. 44-53.

10. Буторин Д.В., Филиппенко Н.Г., Филатова С.Н., Каргапольцев С.К. Автоматизация контроля структурных превращений в полимерных материалах при электротермической обработке // Современные технологии. Системный анализ. Моделирование. 2016. № 1 (49). С. 117-125.

11. Лившиц А.В. Несимметричные термоизоляторы при высокочастотной электротермии полимеров // Наука и образование. М.: МГТУ им. Н.Э. Баумана. 2014. № 5 [Электронный ресурс]. Режим доступа: http://technomagelpub.elpub.ru/jour/article/view/592/594 (25.06.2018)

12. Лившиц А.В. Влияние термоизоляторов на нагрев полимеров при высокочастотной электротермии // Инженерный вестник Дона. 2014. № 2 (29). С. 21.

13. Butorin D.V., Bychkovsky V.S., Filippenko N.G., Livshits A.V., Kargapoltcev S.K. Investigations of Mechanical, Physical and Technical Processes in Oil-filling of products Made of Polimeric and Composite Materials. Proceedings of the 6th International Symposium on Innovation and Sustainability of Modern Railway, ISMR 2018. Irkutsk: Irkutsk state University of railway engineering Publ., 2018. P. 447-452.

14. Bychkovsky V.S., Filippenko N.G., Popov S.I., Livshits A.V., Kargapoltsev S.K. The Creation of Self-lubricating Polymeric Materials for the Products with Friction Units in Machinery Production Equipment. Proceedings of the 6th International Symposium on Innovation and Sustainability of Modern Railway, ISMR 2018. Irkutsk: Irkutsk state University of railway engineering Publ., 2018. P. 506-511.


Review

For citations:


Livshits A.V., Kargapoltsev S.K., Filippenko N.G., Butorin D.V. ENERGY EFFICIENT CONTROL OF POLYMER MATERIAL HIGH FREQUENCY PROCESSING. Proceedings of Irkutsk State Technical University. 2018;22(12):86-95. (In Russ.) https://doi.org/10.21285/1814-3520-2018-12-86-95

Views: 214


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)