Preview

iPolytech Journal

Расширенный поиск

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТОПОЛОГИЧЕСКИХ СВОЙСТВ СЕТЕЙ ЭЛЕКТРОСНАБЖЕНИЯ ИТАЛИИ И ВОСТОЧНОЙ СИБИРИ

https://doi.org/10.21285/1814-3520-2018-11-170-181

Аннотация

Приводится сравнительный анализ топологий сетей электроснабжения Италии и Восточной Сибири по нескольким параметрам: средняя степень узлов, средняя длина пути, средний коэффициент кластеризации, плотность графа, распределение степени узлов и коэффициенты корреляции мер центральностей. Для анализа сетей используется аппарат теории комплексных сетей. Выявлено, что данные сети имеют схожие характеристики и структуру. Они не описываются моделью классических случайных графов и не являются безмасштабными. Исследована корреляция мер центральностей для данных сетей. Выявлено, что характер корреляции схож для обеих сетей, это свидетельствует о похожести их топологических структур. Кроме того, это означает, что степень согласованности рангов узлов, полученных с помощью различных мер центральности, будет примерно одинакова. Следовательно, для сети Восточной Сибири можно ожидать аналогичной эффективности метода. Так как электросети Италии и Восточной Сибири имеют схожую топологию, метод выявления критически важных объектов будет эффективен для обеих сетей.

Об авторе

Е. В. Носырева
Иркутский национальный исследовательский технический университет
Россия


Список литературы

1. Кондратьев А. Современные тенденции в исследовании критической инфраструктуры в зарубежных странах // Зарубежное военное обозрение. 2012. № 1. С. 19-30

2. Массель Л.В. Конвергенция исследований критических инфраструктур, качества жизни и безопасности [Электронный ресурс] // Информационные технологии и системы тр. VI междунар. науч. конф. (Банное, Россия, 1-5 марта 2017 г.). Челябинск: Изд-во Челяб. гос. ун-та, 2017. С. 170-175. URL: http://iit.csu.ru/content/docs/science/itis2017/itis2017. pdf (16.07.2018)

3. Методика отнесения объектов государственной и негосударственной собственности к критически важным объектам для национальной безопасности Российской Федерации. утв. МЧС 17.10.2012 №2-4-87-23-14. М., 2012 г.

4. Носырева Е.В. Применение теории комплексных сетей для выявления критически важных объектов энергетики // Вестник Иркутского государственного технического университета. 2017. Т. 21. № 7. С. 51-66. doi: https: //doi.org/10.21285/1814-3520-2017-7-51-66

5. Евин И.А. Введение в теорию сложных сетей // Компьютерные исследования и моделирование. 2010. Т. 2. № 2. С. 121-141

6. Albert R., Barabasi A.-L. Statistical mechanics of complex networks // Rev. Mod. Phys. 2002, V. 74, № 47,; DOI: arXiv:cond-mat/0106096.

7. Buldyrev, S. Parshani R., Paul G., Stanley H., Havlin Sh. Catastrophic cascade of failures in interdependent networks. // Nature, Vol. 464|15 April 2010, pp. 1025-1028 DOI:10.1038/nature08932

8. Об утверждении схемы и программы развития Единой энергетической системы России на 2016-2022 годы: приказ Министерства энергетики Российской Федерации от 1 марта 2016 г. №147. URL: https://minenergo.gov.ru/node/8170 (16.07.2018).

9. Райгородский А.М. Модели случайных графов и их применения. // Труды МФТИ. 2010. Т. 2. № 4. С. 130-140.

10. Щербакова Н.Г. Меры центральности в сетях // Проблемы информатики. 2015. № 2. С. 18-30.

11. Boldi P., Vigna S. Axioms for Centrality // Internet Mathematics. 2014. V. 10. № 3-4. P. 222-262. DOI: arXiv:1308.2140v2 [cs.SI].

12. Boccaletti S., Bianconi G., Criado R., C.I. del Genio, Gomez-Gardenes J., Romance M., Sendina-Nadal I., Wang Z., Zanin M. The structure and dynamics of multilayer networks // Phys. Reps. 2014. V. 544. № 1. P. 1-122.

13. De Domenico M., Sole-Ribalta A., Gomez S., and Arenas A. Centrality in interconnected multilayer networks. arXiv:1306.0519 (2013).

14. De Domenico M., Sole-Ribalta A., Gomez S. and Arenas A. Navigability of interconnected networks under random failures, PNAS 111 (2014) no. 23, 8351-8356.

15. De Domenico M., Sole-Ribalta A., Cozzo E., Kivela M., Moreno Y., Porter M. A., Gomez S. and Arenas A. Mathematical formulation of multilayer networks, Phys. Rev. X 3 (2013) 041022.

16. Estrada E. and Gomez-Gardenes J. Communicability reveals a transition to coordinated behavior in multiplex networks, Phys. Rev. E, 89 (2014) 042819.

17. Gomez S., Daz-Guilera A., Gomez-Gardenes J., Perez-Vicente C., Moreno Y., and Arenas A. Diffusion dynamics on multiplex networks. Physical Review Letters 110, 028701 (2013).

18. Halu A., Mondrag_on R. J., Panzarasa P. and Bianconi G. Multiplex PageRank, PLOS ONE, 8 (2013) e78293.

19. Kivelä M., Arenas A., Barthelemy M., Gleeson J. P., Moreno Y., Porter M. A. Multilayer Networks. // J. Complex Netw. 2014 2(3): 203-271. DOI: arXiv:1309.7233v4 [physics.soc-ph].

20. Sola L., Romance M., Criado R., Flores J., del Amo A. G., and Boccaletti S. Centrality of nodes in multiplex networks (2013), arXiv:1305.7445.

21. Sola L., Romance M., Criado R., Flores J., Garcia del Amo A. and Boccaletti S. Eigenvector centrality of nodes in multiplex networks. Chaos. 2013 23 033131.


Рецензия

Для цитирования:


Носырева Е.В. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТОПОЛОГИЧЕСКИХ СВОЙСТВ СЕТЕЙ ЭЛЕКТРОСНАБЖЕНИЯ ИТАЛИИ И ВОСТОЧНОЙ СИБИРИ. Вестник Иркутского государственного технического университета. 2018;22(11):170-181. https://doi.org/10.21285/1814-3520-2018-11-170-181

For citation:


Nosyreva E.V. COMPARATIVE ANALYSIS OF TOPOLOGICAL PROPERTIES OF ELECTRICAL SUPPLY NETWORKS IN ITALY AND EASTERN SIBERIA. Proceedings of Irkutsk State Technical University. 2018;22(11):170-181. (In Russ.) https://doi.org/10.21285/1814-3520-2018-11-170-181

Просмотров: 235


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)