Preview

iPolytech Journal

Advanced search

BIQUATERNION-BASED MODELING OF ASSEMBLY UNIT PERMISSIBLE SPATIAL TOLERANCES

https://doi.org/10.21285/1814-3520-2018-11-71-88

Abstract

Dimensional deviations arising in mechanical assemblies result from the change in the shape, orientation or position of assembly geometrical elements. If these deviations occur between the mating surfaces of assembly components they affect the final result of the assembly. One of the main conditions of successful assembly and assemblability is accounting for these deviations as early as the design stage of assembly units. The purpose of the article is representation of the general approach for the formalized description of permissible spatial tolerances of assembly unit geometrical elements. The study employs mathematical modeling using the biquaternion theory. A new approach has been developed for formalized imaging of the fields of assembly unit geometrical tolerances using the mathematical apparatus of biquaternions. Configuration manifolds of orientation and position tolerances are built and classified. Biquaternions used to describe permissible spatial deviations of assembly unit geometric elements enable comprehensive description of these deviations and consideration of their correlation. The constructed configuration manifolds allow to take into account the permissible spatial tolerances of assembly units at the stage of geometric design.

About the Authors

L. F. Khvashchevskaya
Irkutsk National Research Technical University
Russian Federation


D. A. Zhuravlev
Irkutsk National Research Technical University
Russian Federation


References

1. Журавлев Д.А., Грушко П.Я., Яценко О.В. О новых дифференциально-геометрических подходах к автоматизированному проектированию сборок с учетом допусков // Вестник Иркутского государственного технического университета. 2002. № 12. С. 82-92.

2. Журавлев Д.А., Гаер М.А. Пространственная геометрическая характеристика допусков // Вестник ИрГТУ. 2005. № 1. С. 116-125.

3. Журавлев Д.А., Гаер М.А. Допуски, связанные с изгибанием поверхности // Вестник Иркутского государственного технического университета. 2006. № 4 (28). С. 12-15.

4. Гаер М.А., Журавлев Д.А., Яценко О.В. Конфигурационные пространства поверхностей деталей и сборок // Вестник ИрГТУ. 2011. № 10 (57). С. 32-36.

5. Гаер М.А. Технология конфигурационного прямого моделирования // Вестник Иркутского государственного технического университета. 2012. № 11 (70). С. 44-47.

6. Гаер М.А., Шабалин А.В., Валов А.А. Дифференциально-геометрический подход к описанию допусков искажения метрики // Вестник Иркутского государственного технического университета. 2015. № 9 (104). С. 34-39.

7. Котельников А. П. Винтовое счисление и некоторые приложения его к геометрии и механике. М.: КомКнига, 2006. 224 с.

8. Челноков Ю. Н. Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. Геометрия и кинематика движения. М.: Физматлит, 2006. 512 с.

9. Clifford W. Preliminary Scetch of Biquaternions // Proc. of London Math. Soc. 1873. Vol. IV. pp. 381-393.

10. Davidson J.K., Shah J.J., Mujezinovic A. A new mathematical model for geometric tolerances as applied to round faces. Baltimore: Maryland, 2000.

11. Davidson J.K., Shah J.J. Mathematical model to formalize tolerance specifications and enable full 3D tolerance analysis. In Service and Manufacturing Grantees and Research conference. Dallas: Texas, 2004.

12. Ghie W., Laperriere L., Desrochers A. Re-design of mechanical assemblies using the Jacobian-Torsor model // Models for Computer aided tolerance in design and manufacturing. London: Springer, 2006. P. 95-104.

13. Pasupathy T.M.K., Morse E.P., Wilhelm R.G. A Survey of Mathematical Methods for the Construction of Geometric Tolerance Zones // Journal of Computing and Information Science and Engineering. 2003. № 3(1). P. 64-75.

14. Polini W. Geometric Tolerance Analysis. Geometric Tolerances. Impact on Product Design. Quality Inspection and Statistical Process Monitoring. 2011. XVIII. P. 39-68.

15. Roy U., Li B. Representation and interpretation of geometric tolerances for polyhedral objects. II Size. Orientation and Positional tolerances // Computer Aided Design. 1999. № 31(4). P. 273-285.

16. Turner J.U., Wozny M.J. The M-space theory of tolerances in geometric modeling for CAD Applications / Eds. Wozny M.J., McLaughlin J.L. Elsevier Science Publishers. IFIP. 1988. P.163-187.


Review

For citations:


Khvashchevskaya L.F., Zhuravlev D.A. BIQUATERNION-BASED MODELING OF ASSEMBLY UNIT PERMISSIBLE SPATIAL TOLERANCES. Proceedings of Irkutsk State Technical University. 2018;22(11):71-88. (In Russ.) https://doi.org/10.21285/1814-3520-2018-11-71-88

Views: 230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)