Preview

iPolytech Journal

Advanced search

DETERMINATION OF INTERNAL FORCE FACTORS UNDER RIBBED PART HARDENING

https://doi.org/10.21285/1814-3520-2018-10-29-37

Abstract

PURPOSE. As a rule the parts of aircraft primary structures made of aluminum alloys have longitudinal-transverse ribs in order to increase rigidity. As a result, the cross-section of such parts has a complex shape in the form of a T, a channel, double T, etc. with straight and tilted shelves. The manufacture of these parts involving the processes of milling and subsequent hardening by impact methods is accompanied by the unwanted deformation (buckling) which is represented by the deviation from flatness and blade shape. The buckling can be eliminated after milling by the methods of local plastic deformation including roller burnishing, or pressing. Mechanical processing after hardening including the straightening by the magnetic particle method is not regimented by the industry normative technical documentation due to the possibility of introduction of an undetermined stress-strain state in the hardened surface layer and occurrence of weakened zones in the surface layer of the part. Enhancement of technological capabilities for low rigid part production with the use of the preventive deformation technology implies the introduction of part shape distortion in order to compensate the buckling that arises in subsequent hardening operations performed by the methods of surface plastic deformation. METHODS. The study employs the modeling using nonlinear finite element analysis to determine the general bending strain of a part resulting from surface hardening of small fractions by shot peening, study of the sample curvature with the help of indicating devices to determine the force factors of the hardening process on the basis of the known laws of the theory of elasticity. RESULTS AND THEIR DISCUSSION. The results of an experimental study on machining of simulators of structural elements reinforced by ribbed parts are obtained. The need for using modeling to determine the deformations of parts subjected to hardening by impact methods is substantiated.

About the Authors

A. A. Makaruk
Irkutsk National Research Technical University
Russian Federation


A. A. Pashkov
Irkutsk National Research Technical University
Russian Federation


A. M. Khamaganov
Irkutsk National Research Technical University
Russian Federation


O. V. Samoilenko
Irkutsk National Research Technical University
Russian Federation


References

1. Макарук А.А., Минаев Н.В. Технология формообразования и правки маложестких деталей методами местного пластического деформирования // Высокоэффективные технологии проектирования, конструкторско-технологической подготовки и изготовления самолетов: материалы Всерос. (с междунар. участием) науч.-практ. семинара (г. Иркутск, 09-11 ноября 2011 г.). Иркутск, 2011. С. 117-121.

2. Макарук А.А., Минаев Н.В. Технология формообразования и правки маложестких деталей раскаткой роликами // Известия Самарского научного центра Российской академии наук. 2013. Т. 15. № 6 (2). С. 404-408.

3. Pashkov A.Ye., Makaruk A.A., Minaev N.V. Automation methods for forming and rectifying stiffened parts with roll-ing machines // International Journal of Engineering and Technology. 2015. Vol. 7. No. 6. 2030 р.

4. Беляков В.И., Мовшович А.Я., Кочергин Ю.А. Изготовление листовых деталей методом раскатки // Системи обробки інформації. 2010. Випуск 9 (90).

5. Пашков А.Е., Дияк А.Ю. Внутренние силовые факторы процесса дробеметной обработки листовых деталей // Сб. материалов Междунар. науч.-практ. конф. Иркутск: ИРГТУ, 2005. С. 171-177.

6. Пашков А.Е., Викулова С.В., Вяткин А.С., Макарук А.А. К вопросу обеспечения точности определения интенсивности поверхностного упрочнения // Современные технологии. Системный анализ. Моделирование. 2010. № 1(25). С. 102-107.

7. Fubin Tu. A sequential DEM-FEM coupling method for shot peening simulation. June 2017. Vol. 319. P. 200-212.

8. Murugaratnam K., Utilia S., Petrinic N. A combined DEM-FEM numerical method for Shot Peening parameter optimization. January 2015. Vol. 79. P. 13-26.

9. Miao H.Y., Larose S., Perron C., Evesque M. On the potential applications of a 3D random finite element model for the simulation of shot peening. Adv. Eng. Softw. 2009. Vol. 40. P. 1023-1038.

10. Zhuo Chen, Fan Yang Realistic Finite Element Simulations of Arc-Height Development in Shot-Peened Almen Strips // Journal of Engineering Materials and Technology. October 2014. Vol. 136 / 041002-1.

11. Пат. № 2566689, Российская Федерация. Способ правки длинномерной, подкрепленной ребрами детали и устройство для его осуществления (варианты). № 2013156560 / А.А. Макарук, А.Е. Пашков, А.В. Крючкин. № 2013156560; заявл. 20.12.2013; зарег. 29.09.15.

12. Пат. № 2581693, Российская Федерация. Устройство для обкатывания ребер панелей с регулируемой нагрузкой / А.Е. Пашков, А.А. Макарук. № 2014149583; зарег. 29.03.16.

13. Пашков А.Е., Дияк А.Ю. Определение параметров дробеударного формообразования-упрочнения при помощи CAD/CAM/CAE систем. Иркутск: Изд-во ИРГТУ, 1998. С. 59-62.


Review

For citations:


Makaruk A.A., Pashkov A.A., Khamaganov A.M., Samoilenko O.V. DETERMINATION OF INTERNAL FORCE FACTORS UNDER RIBBED PART HARDENING. Proceedings of Irkutsk State Technical University. 2018;22(10):29-37. (In Russ.) https://doi.org/10.21285/1814-3520-2018-10-29-37

Views: 173


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)